Lineare Algebra und Analytische Geometrie: Ein Lehrbuch für Physiker und Mathematiker
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | German |
Veröffentlicht: |
Basel
Birkhäuser Basel
2003
|
Schriftenreihe: | Grundstudium Mathematik
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Die ersten fünf Kapitel dieses neuen Lehrbuchs entsprechen nach Inhalt und Methode dem Standard einer modernen Vorlesung über Lineare Algebra. Der Leser gelangt aber nachher direkt zu den grundlegenden Aussagen der Linearen Algebra bei Ringen. Die Darstellung ist von Anfang an anschaulich und geometrisch, sie schreitet behutsam voran in der Abstraktion. In dem Kapitel über projektive Geometrie findet man im reellen und komplexen Fall Diskussionen der projektiven Räume und Quadriken, die inhaltsreich und wesentlich für die heutige Geometrie sind. Physiker finden eine Diskussion von Quaternionen, Pauli-Matrizen, orthogonalen und unitären Gruppen sowie der Lorentzgruppe und ihrer Spinordarstellung. Die Lorentzgruppe wird durch ein Kausalitätsprinzip charakterisiert. Die topologische Beschreibung der Quadriken und die Charakterisierung der Lorentzgruppe finden sich in anderen Lehrbüchern nicht, die Erklärung der Lie-Theorie der niederdimensionalen klassischen Gruppen nur in höheren Lehrbüchern. Die wichtigen und schönen klassischen Formeln für symmetrische Polynome im Zusammenhang mit Identitäten für Endomorphismen stehen kaum anderswo so geschickt beieinander |
Beschreibung: | 1 Online-Ressource (X, 366S.) |
ISBN: | 9783034876421 9783764321789 |
DOI: | 10.1007/978-3-0348-7642-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042443568 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150324s2003 |||| o||u| ||||||ger d | ||
020 | |a 9783034876421 |c Online |9 978-3-0348-7642-1 | ||
020 | |a 9783764321789 |c Print |9 978-3-7643-2178-9 | ||
024 | 7 | |a 10.1007/978-3-0348-7642-1 |2 doi | |
035 | |a (OCoLC)863939016 | ||
035 | |a (DE-599)BVBBV042443568 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a ger | |
049 | |a DE-91 |a DE-634 |a DE-860 |a DE-92 |a DE-703 |a DE-706 |a DE-Aug4 |a DE-739 |a DE-19 |a DE-83 | ||
082 | 0 | |a 512 |2 23 | |
084 | |a NAT 000 |2 stub | ||
100 | 1 | |a Bröcker, Theodor |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lineare Algebra und Analytische Geometrie |b Ein Lehrbuch für Physiker und Mathematiker |c von Theodor Bröcker |
264 | 1 | |a Basel |b Birkhäuser Basel |c 2003 | |
300 | |a 1 Online-Ressource (X, 366S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Grundstudium Mathematik | |
500 | |a Die ersten fünf Kapitel dieses neuen Lehrbuchs entsprechen nach Inhalt und Methode dem Standard einer modernen Vorlesung über Lineare Algebra. Der Leser gelangt aber nachher direkt zu den grundlegenden Aussagen der Linearen Algebra bei Ringen. Die Darstellung ist von Anfang an anschaulich und geometrisch, sie schreitet behutsam voran in der Abstraktion. In dem Kapitel über projektive Geometrie findet man im reellen und komplexen Fall Diskussionen der projektiven Räume und Quadriken, die inhaltsreich und wesentlich für die heutige Geometrie sind. Physiker finden eine Diskussion von Quaternionen, Pauli-Matrizen, orthogonalen und unitären Gruppen sowie der Lorentzgruppe und ihrer Spinordarstellung. Die Lorentzgruppe wird durch ein Kausalitätsprinzip charakterisiert. Die topologische Beschreibung der Quadriken und die Charakterisierung der Lorentzgruppe finden sich in anderen Lehrbüchern nicht, die Erklärung der Lie-Theorie der niederdimensionalen klassischen Gruppen nur in höheren Lehrbüchern. Die wichtigen und schönen klassischen Formeln für symmetrische Polynome im Zusammenhang mit Identitäten für Endomorphismen stehen kaum anderswo so geschickt beieinander | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebra | |
650 | 4 | |a Matrix theory | |
650 | 4 | |a Topological Groups | |
650 | 4 | |a Geometry | |
650 | 4 | |a Linear and Multilinear Algebras, Matrix Theory | |
650 | 4 | |a Topological Groups, Lie Groups | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Lineare Algebra |0 (DE-588)4035811-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Analytische Geometrie |0 (DE-588)4001867-2 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Analytische Geometrie |0 (DE-588)4001867-2 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Lineare Algebra |0 (DE-588)4035811-2 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-7642-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SNA |a ZDB-2-BAD | ||
940 | 1 | |q ZDB-2-SNA_Archive | |
940 | 1 | |q ZDB-2-SNA_2000/2004 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027878815 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153137689264128 |
---|---|
any_adam_object | |
author | Bröcker, Theodor |
author_facet | Bröcker, Theodor |
author_role | aut |
author_sort | Bröcker, Theodor |
author_variant | t b tb |
building | Verbundindex |
bvnumber | BV042443568 |
classification_tum | NAT 000 |
collection | ZDB-2-SNA ZDB-2-BAD |
ctrlnum | (OCoLC)863939016 (DE-599)BVBBV042443568 |
dewey-full | 512 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512 |
dewey-search | 512 |
dewey-sort | 3512 |
dewey-tens | 510 - Mathematics |
discipline | Allgemeine Naturwissenschaft Mathematik |
doi_str_mv | 10.1007/978-3-0348-7642-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03358nmm a2200589zc 4500</leader><controlfield tag="001">BV042443568</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150324s2003 |||| o||u| ||||||ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034876421</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-7642-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783764321789</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-7643-2178-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-7642-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863939016</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042443568</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">NAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bröcker, Theodor</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lineare Algebra und Analytische Geometrie</subfield><subfield code="b">Ein Lehrbuch für Physiker und Mathematiker</subfield><subfield code="c">von Theodor Bröcker</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 366S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Grundstudium Mathematik</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Die ersten fünf Kapitel dieses neuen Lehrbuchs entsprechen nach Inhalt und Methode dem Standard einer modernen Vorlesung über Lineare Algebra. Der Leser gelangt aber nachher direkt zu den grundlegenden Aussagen der Linearen Algebra bei Ringen. Die Darstellung ist von Anfang an anschaulich und geometrisch, sie schreitet behutsam voran in der Abstraktion. In dem Kapitel über projektive Geometrie findet man im reellen und komplexen Fall Diskussionen der projektiven Räume und Quadriken, die inhaltsreich und wesentlich für die heutige Geometrie sind. Physiker finden eine Diskussion von Quaternionen, Pauli-Matrizen, orthogonalen und unitären Gruppen sowie der Lorentzgruppe und ihrer Spinordarstellung. Die Lorentzgruppe wird durch ein Kausalitätsprinzip charakterisiert. Die topologische Beschreibung der Quadriken und die Charakterisierung der Lorentzgruppe finden sich in anderen Lehrbüchern nicht, die Erklärung der Lie-Theorie der niederdimensionalen klassischen Gruppen nur in höheren Lehrbüchern. Die wichtigen und schönen klassischen Formeln für symmetrische Polynome im Zusammenhang mit Identitäten für Endomorphismen stehen kaum anderswo so geschickt beieinander</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrix theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear and Multilinear Algebras, Matrix Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analytische Geometrie</subfield><subfield code="0">(DE-588)4001867-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Analytische Geometrie</subfield><subfield code="0">(DE-588)4001867-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-7642-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SNA</subfield><subfield code="a">ZDB-2-BAD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SNA_Archive</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SNA_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027878815</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV042443568 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:50Z |
institution | BVB |
isbn | 9783034876421 9783764321789 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027878815 |
oclc_num | 863939016 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-634 DE-860 DE-92 DE-703 DE-706 DE-Aug4 DE-739 DE-19 DE-BY-UBM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-634 DE-860 DE-92 DE-703 DE-706 DE-Aug4 DE-739 DE-19 DE-BY-UBM DE-83 |
physical | 1 Online-Ressource (X, 366S.) |
psigel | ZDB-2-SNA ZDB-2-BAD ZDB-2-SNA_Archive ZDB-2-SNA_2000/2004 |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Grundstudium Mathematik |
spelling | Bröcker, Theodor Verfasser aut Lineare Algebra und Analytische Geometrie Ein Lehrbuch für Physiker und Mathematiker von Theodor Bröcker Basel Birkhäuser Basel 2003 1 Online-Ressource (X, 366S.) txt rdacontent c rdamedia cr rdacarrier Grundstudium Mathematik Die ersten fünf Kapitel dieses neuen Lehrbuchs entsprechen nach Inhalt und Methode dem Standard einer modernen Vorlesung über Lineare Algebra. Der Leser gelangt aber nachher direkt zu den grundlegenden Aussagen der Linearen Algebra bei Ringen. Die Darstellung ist von Anfang an anschaulich und geometrisch, sie schreitet behutsam voran in der Abstraktion. In dem Kapitel über projektive Geometrie findet man im reellen und komplexen Fall Diskussionen der projektiven Räume und Quadriken, die inhaltsreich und wesentlich für die heutige Geometrie sind. Physiker finden eine Diskussion von Quaternionen, Pauli-Matrizen, orthogonalen und unitären Gruppen sowie der Lorentzgruppe und ihrer Spinordarstellung. Die Lorentzgruppe wird durch ein Kausalitätsprinzip charakterisiert. Die topologische Beschreibung der Quadriken und die Charakterisierung der Lorentzgruppe finden sich in anderen Lehrbüchern nicht, die Erklärung der Lie-Theorie der niederdimensionalen klassischen Gruppen nur in höheren Lehrbüchern. Die wichtigen und schönen klassischen Formeln für symmetrische Polynome im Zusammenhang mit Identitäten für Endomorphismen stehen kaum anderswo so geschickt beieinander Mathematics Algebra Matrix theory Topological Groups Geometry Linear and Multilinear Algebras, Matrix Theory Topological Groups, Lie Groups Mathematik Lineare Algebra (DE-588)4035811-2 gnd rswk-swf Analytische Geometrie (DE-588)4001867-2 gnd rswk-swf 1\p (DE-588)4123623-3 Lehrbuch gnd-content Analytische Geometrie (DE-588)4001867-2 s 2\p DE-604 Lineare Algebra (DE-588)4035811-2 s 3\p DE-604 https://doi.org/10.1007/978-3-0348-7642-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bröcker, Theodor Lineare Algebra und Analytische Geometrie Ein Lehrbuch für Physiker und Mathematiker Mathematics Algebra Matrix theory Topological Groups Geometry Linear and Multilinear Algebras, Matrix Theory Topological Groups, Lie Groups Mathematik Lineare Algebra (DE-588)4035811-2 gnd Analytische Geometrie (DE-588)4001867-2 gnd |
subject_GND | (DE-588)4035811-2 (DE-588)4001867-2 (DE-588)4123623-3 |
title | Lineare Algebra und Analytische Geometrie Ein Lehrbuch für Physiker und Mathematiker |
title_auth | Lineare Algebra und Analytische Geometrie Ein Lehrbuch für Physiker und Mathematiker |
title_exact_search | Lineare Algebra und Analytische Geometrie Ein Lehrbuch für Physiker und Mathematiker |
title_full | Lineare Algebra und Analytische Geometrie Ein Lehrbuch für Physiker und Mathematiker von Theodor Bröcker |
title_fullStr | Lineare Algebra und Analytische Geometrie Ein Lehrbuch für Physiker und Mathematiker von Theodor Bröcker |
title_full_unstemmed | Lineare Algebra und Analytische Geometrie Ein Lehrbuch für Physiker und Mathematiker von Theodor Bröcker |
title_short | Lineare Algebra und Analytische Geometrie |
title_sort | lineare algebra und analytische geometrie ein lehrbuch fur physiker und mathematiker |
title_sub | Ein Lehrbuch für Physiker und Mathematiker |
topic | Mathematics Algebra Matrix theory Topological Groups Geometry Linear and Multilinear Algebras, Matrix Theory Topological Groups, Lie Groups Mathematik Lineare Algebra (DE-588)4035811-2 gnd Analytische Geometrie (DE-588)4001867-2 gnd |
topic_facet | Mathematics Algebra Matrix theory Topological Groups Geometry Linear and Multilinear Algebras, Matrix Theory Topological Groups, Lie Groups Mathematik Lineare Algebra Analytische Geometrie Lehrbuch |
url | https://doi.org/10.1007/978-3-0348-7642-1 |
work_keys_str_mv | AT brockertheodor linearealgebraundanalytischegeometrieeinlehrbuchfurphysikerundmathematiker |