Berechnung magnetischer Felder:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | German |
Veröffentlicht: |
Vienna
Springer Vienna
1952
|
Schriftenreihe: | Technische Elektrodynamik
1 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Unter den Gegenständen der Technischen Elektrodynamik zeichnet sich das magnetische Feld durch den Reichtum seiner Anwendungen aus: Die wohl älteste Kenntnis des Magnetismus als geophysikalisches Element hat ihre erdgebundenen Grenzen gesprengt und sich zur Lehre des kosmischen l\Iagnetismus erweitert, der, auch in den fernsten Sternen beheimatet, den Weltraum in eigenartigen Wellen durchzieht und viel leicht den Schlüssel zum Verständnis der noch rätselhaften Herkunft der Höhenstrahl ung liefert. Als technisches Abbild der erdmagnetischen Urerfahrung ist der permanente Magnet anzusprechen, der durch Verwendung neuzeitlicher Werkstoffe zu höchster Konzentration seiner Arbeitsfähigkeit gebracht wurde. Während die Magnetnadel als Mittel geographischer Orientierung allerdings den vollkommeneren Methoden des Kreiselkompasses. der draht losen Peilung und der selbsttätigen Landschaftszeichnung durch Radar strahlen und Ultraschallwellen mehr und mehr weicht, bleibt doch ihre Be deutung als Instrument zur magnetischen Feinstrukturerforschung des Geoids unangetastet. Dil' Oerstedsehe Entdeckung der ablenkenden Kraft elektrischer Ströme auf Magnetnadeln bildet im Verein mit dem Faradayschen Induktions gesetz die Grundlage des Elektromagnetismus, als dessen eindrucksvollstes Anwendungsgebiet die elektromagnetischen Maschinen erscheinen; wesent lich die nämlichen Wirkungen werden in zahlreichen Meßgeräten, Relais und elektroakustischen Apparaten ausgenützt. Die integralen elektrodynamischen Stromkräfte resultieren aus der Lorentz-Kraft auf den einzelnen, bewegten Ladungsträger: Sie konzentriert die Kathodenstrahlen moderner Hochleistungs-Magnetronröhren, sie er möglicht die Teilchentrennung im Massenspektrographen, und sie führt in Ionen-Schleudermaschinen die Ladungsträger dem vielfach wieder holten Angriff energiespendender elektrischer Felder zu, um deren Einzel wirkungen zu Beträgen kosmischen Ausmaßes aufzusummieren. Angesichts dieses überwältigenden Aufgabenkreises magnetischer Felder entspringt der Wunsch nach ihrer möglichst gen auen Kenntnis einem dringenden Bedürfnis |
Beschreibung: | 1 Online-Ressource (X, 432 S. 234 Abb) |
ISBN: | 9783709130247 9783709130254 |
DOI: | 10.1007/978-3-7091-3024-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042439137 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150320s1952 |||| o||u| ||||||ger d | ||
020 | |a 9783709130247 |c Online |9 978-3-7091-3024-7 | ||
020 | |a 9783709130254 |c Print |9 978-3-7091-3025-4 | ||
024 | 7 | |a 10.1007/978-3-7091-3024-7 |2 doi | |
035 | |a (OCoLC)864027316 | ||
035 | |a (DE-599)BVBBV042439137 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a ger | |
049 | |a DE-91 |a DE-634 |a DE-92 |a DE-573 |a DE-706 |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 620 |2 23 | |
084 | |a TEC 000 |2 stub | ||
084 | |a DAT 000 |2 stub | ||
100 | 1 | |a Ollendorff, Franz |e Verfasser |4 aut | |
245 | 1 | 0 | |a Berechnung magnetischer Felder |c von Franz Ollendorff |
264 | 1 | |a Vienna |b Springer Vienna |c 1952 | |
300 | |a 1 Online-Ressource (X, 432 S. 234 Abb) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Technische Elektrodynamik |v 1 | |
500 | |a Unter den Gegenständen der Technischen Elektrodynamik zeichnet sich das magnetische Feld durch den Reichtum seiner Anwendungen aus: Die wohl älteste Kenntnis des Magnetismus als geophysikalisches Element hat ihre erdgebundenen Grenzen gesprengt und sich zur Lehre des kosmischen l\Iagnetismus erweitert, der, auch in den fernsten Sternen beheimatet, den Weltraum in eigenartigen Wellen durchzieht und viel leicht den Schlüssel zum Verständnis der noch rätselhaften Herkunft der Höhenstrahl ung liefert. Als technisches Abbild der erdmagnetischen Urerfahrung ist der permanente Magnet anzusprechen, der durch Verwendung neuzeitlicher Werkstoffe zu höchster Konzentration seiner Arbeitsfähigkeit gebracht wurde. Während die Magnetnadel als Mittel geographischer Orientierung allerdings den vollkommeneren Methoden des Kreiselkompasses. | ||
500 | |a der draht losen Peilung und der selbsttätigen Landschaftszeichnung durch Radar strahlen und Ultraschallwellen mehr und mehr weicht, bleibt doch ihre Be deutung als Instrument zur magnetischen Feinstrukturerforschung des Geoids unangetastet. Dil' Oerstedsehe Entdeckung der ablenkenden Kraft elektrischer Ströme auf Magnetnadeln bildet im Verein mit dem Faradayschen Induktions gesetz die Grundlage des Elektromagnetismus, als dessen eindrucksvollstes Anwendungsgebiet die elektromagnetischen Maschinen erscheinen; wesent lich die nämlichen Wirkungen werden in zahlreichen Meßgeräten, Relais und elektroakustischen Apparaten ausgenützt. | ||
500 | |a Die integralen elektrodynamischen Stromkräfte resultieren aus der Lorentz-Kraft auf den einzelnen, bewegten Ladungsträger: Sie konzentriert die Kathodenstrahlen moderner Hochleistungs-Magnetronröhren, sie er möglicht die Teilchentrennung im Massenspektrographen, und sie führt in Ionen-Schleudermaschinen die Ladungsträger dem vielfach wieder holten Angriff energiespendender elektrischer Felder zu, um deren Einzel wirkungen zu Beträgen kosmischen Ausmaßes aufzusummieren. Angesichts dieses überwältigenden Aufgabenkreises magnetischer Felder entspringt der Wunsch nach ihrer möglichst gen auen Kenntnis einem dringenden Bedürfnis | ||
650 | 4 | |a Engineering | |
650 | 4 | |a Engineering, general | |
650 | 4 | |a Ingenieurwissenschaften | |
650 | 0 | 7 | |a Magnetfeld |0 (DE-588)4074450-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elektrizitätslehre |0 (DE-588)4113415-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Elektrizitätslehre |0 (DE-588)4113415-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Magnetfeld |0 (DE-588)4074450-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-7091-3024-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-STI |a ZDB-2-BAD | ||
940 | 1 | |q ZDB-2-STI_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027874466 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153129694920704 |
---|---|
any_adam_object | |
author | Ollendorff, Franz |
author_facet | Ollendorff, Franz |
author_role | aut |
author_sort | Ollendorff, Franz |
author_variant | f o fo |
building | Verbundindex |
bvnumber | BV042439137 |
classification_tum | TEC 000 DAT 000 |
collection | ZDB-2-STI ZDB-2-BAD |
ctrlnum | (OCoLC)864027316 (DE-599)BVBBV042439137 |
dewey-full | 620 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620 |
dewey-search | 620 |
dewey-sort | 3620 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Technik Technik Informatik |
doi_str_mv | 10.1007/978-3-7091-3024-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03943nmm a2200529zcb4500</leader><controlfield tag="001">BV042439137</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150320s1952 |||| o||u| ||||||ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783709130247</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-7091-3024-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783709130254</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-7091-3025-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-7091-3024-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864027316</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042439137</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">TEC 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ollendorff, Franz</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Berechnung magnetischer Felder</subfield><subfield code="c">von Franz Ollendorff</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Vienna</subfield><subfield code="b">Springer Vienna</subfield><subfield code="c">1952</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 432 S. 234 Abb)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Technische Elektrodynamik</subfield><subfield code="v">1</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Unter den Gegenständen der Technischen Elektrodynamik zeichnet sich das magnetische Feld durch den Reichtum seiner Anwendungen aus: Die wohl älteste Kenntnis des Magnetismus als geophysikalisches Element hat ihre erdgebundenen Grenzen gesprengt und sich zur Lehre des kosmischen l\Iagnetismus erweitert, der, auch in den fernsten Sternen beheimatet, den Weltraum in eigenartigen Wellen durchzieht und viel leicht den Schlüssel zum Verständnis der noch rätselhaften Herkunft der Höhenstrahl ung liefert. Als technisches Abbild der erdmagnetischen Urerfahrung ist der permanente Magnet anzusprechen, der durch Verwendung neuzeitlicher Werkstoffe zu höchster Konzentration seiner Arbeitsfähigkeit gebracht wurde. Während die Magnetnadel als Mittel geographischer Orientierung allerdings den vollkommeneren Methoden des Kreiselkompasses. </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">der draht losen Peilung und der selbsttätigen Landschaftszeichnung durch Radar strahlen und Ultraschallwellen mehr und mehr weicht, bleibt doch ihre Be deutung als Instrument zur magnetischen Feinstrukturerforschung des Geoids unangetastet. Dil' Oerstedsehe Entdeckung der ablenkenden Kraft elektrischer Ströme auf Magnetnadeln bildet im Verein mit dem Faradayschen Induktions gesetz die Grundlage des Elektromagnetismus, als dessen eindrucksvollstes Anwendungsgebiet die elektromagnetischen Maschinen erscheinen; wesent lich die nämlichen Wirkungen werden in zahlreichen Meßgeräten, Relais und elektroakustischen Apparaten ausgenützt. </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Die integralen elektrodynamischen Stromkräfte resultieren aus der Lorentz-Kraft auf den einzelnen, bewegten Ladungsträger: Sie konzentriert die Kathodenstrahlen moderner Hochleistungs-Magnetronröhren, sie er möglicht die Teilchentrennung im Massenspektrographen, und sie führt in Ionen-Schleudermaschinen die Ladungsträger dem vielfach wieder holten Angriff energiespendender elektrischer Felder zu, um deren Einzel wirkungen zu Beträgen kosmischen Ausmaßes aufzusummieren. Angesichts dieses überwältigenden Aufgabenkreises magnetischer Felder entspringt der Wunsch nach ihrer möglichst gen auen Kenntnis einem dringenden Bedürfnis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Magnetfeld</subfield><subfield code="0">(DE-588)4074450-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektrizitätslehre</subfield><subfield code="0">(DE-588)4113415-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elektrizitätslehre</subfield><subfield code="0">(DE-588)4113415-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Magnetfeld</subfield><subfield code="0">(DE-588)4074450-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-7091-3024-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-STI</subfield><subfield code="a">ZDB-2-BAD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-STI_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027874466</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042439137 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:42Z |
institution | BVB |
isbn | 9783709130247 9783709130254 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027874466 |
oclc_num | 864027316 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-634 DE-92 DE-573 DE-706 DE-1046 DE-1047 |
owner_facet | DE-91 DE-BY-TUM DE-634 DE-92 DE-573 DE-706 DE-1046 DE-1047 |
physical | 1 Online-Ressource (X, 432 S. 234 Abb) |
psigel | ZDB-2-STI ZDB-2-BAD ZDB-2-STI_Archive |
publishDate | 1952 |
publishDateSearch | 1952 |
publishDateSort | 1952 |
publisher | Springer Vienna |
record_format | marc |
series2 | Technische Elektrodynamik |
spelling | Ollendorff, Franz Verfasser aut Berechnung magnetischer Felder von Franz Ollendorff Vienna Springer Vienna 1952 1 Online-Ressource (X, 432 S. 234 Abb) txt rdacontent c rdamedia cr rdacarrier Technische Elektrodynamik 1 Unter den Gegenständen der Technischen Elektrodynamik zeichnet sich das magnetische Feld durch den Reichtum seiner Anwendungen aus: Die wohl älteste Kenntnis des Magnetismus als geophysikalisches Element hat ihre erdgebundenen Grenzen gesprengt und sich zur Lehre des kosmischen l\Iagnetismus erweitert, der, auch in den fernsten Sternen beheimatet, den Weltraum in eigenartigen Wellen durchzieht und viel leicht den Schlüssel zum Verständnis der noch rätselhaften Herkunft der Höhenstrahl ung liefert. Als technisches Abbild der erdmagnetischen Urerfahrung ist der permanente Magnet anzusprechen, der durch Verwendung neuzeitlicher Werkstoffe zu höchster Konzentration seiner Arbeitsfähigkeit gebracht wurde. Während die Magnetnadel als Mittel geographischer Orientierung allerdings den vollkommeneren Methoden des Kreiselkompasses. der draht losen Peilung und der selbsttätigen Landschaftszeichnung durch Radar strahlen und Ultraschallwellen mehr und mehr weicht, bleibt doch ihre Be deutung als Instrument zur magnetischen Feinstrukturerforschung des Geoids unangetastet. Dil' Oerstedsehe Entdeckung der ablenkenden Kraft elektrischer Ströme auf Magnetnadeln bildet im Verein mit dem Faradayschen Induktions gesetz die Grundlage des Elektromagnetismus, als dessen eindrucksvollstes Anwendungsgebiet die elektromagnetischen Maschinen erscheinen; wesent lich die nämlichen Wirkungen werden in zahlreichen Meßgeräten, Relais und elektroakustischen Apparaten ausgenützt. Die integralen elektrodynamischen Stromkräfte resultieren aus der Lorentz-Kraft auf den einzelnen, bewegten Ladungsträger: Sie konzentriert die Kathodenstrahlen moderner Hochleistungs-Magnetronröhren, sie er möglicht die Teilchentrennung im Massenspektrographen, und sie führt in Ionen-Schleudermaschinen die Ladungsträger dem vielfach wieder holten Angriff energiespendender elektrischer Felder zu, um deren Einzel wirkungen zu Beträgen kosmischen Ausmaßes aufzusummieren. Angesichts dieses überwältigenden Aufgabenkreises magnetischer Felder entspringt der Wunsch nach ihrer möglichst gen auen Kenntnis einem dringenden Bedürfnis Engineering Engineering, general Ingenieurwissenschaften Magnetfeld (DE-588)4074450-4 gnd rswk-swf Elektrizitätslehre (DE-588)4113415-1 gnd rswk-swf Elektrizitätslehre (DE-588)4113415-1 s 1\p DE-604 Magnetfeld (DE-588)4074450-4 s 2\p DE-604 https://doi.org/10.1007/978-3-7091-3024-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Ollendorff, Franz Berechnung magnetischer Felder Engineering Engineering, general Ingenieurwissenschaften Magnetfeld (DE-588)4074450-4 gnd Elektrizitätslehre (DE-588)4113415-1 gnd |
subject_GND | (DE-588)4074450-4 (DE-588)4113415-1 |
title | Berechnung magnetischer Felder |
title_auth | Berechnung magnetischer Felder |
title_exact_search | Berechnung magnetischer Felder |
title_full | Berechnung magnetischer Felder von Franz Ollendorff |
title_fullStr | Berechnung magnetischer Felder von Franz Ollendorff |
title_full_unstemmed | Berechnung magnetischer Felder von Franz Ollendorff |
title_short | Berechnung magnetischer Felder |
title_sort | berechnung magnetischer felder |
topic | Engineering Engineering, general Ingenieurwissenschaften Magnetfeld (DE-588)4074450-4 gnd Elektrizitätslehre (DE-588)4113415-1 gnd |
topic_facet | Engineering Engineering, general Ingenieurwissenschaften Magnetfeld Elektrizitätslehre |
url | https://doi.org/10.1007/978-3-7091-3024-7 |
work_keys_str_mv | AT ollendorfffranz berechnungmagnetischerfelder |