Initial Boundary Value Problems in Mathematical Physics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | German |
Veröffentlicht: |
Wiesbaden
Vieweg+Teubner Verlag
1986
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The lectures presented in this book were given at the University of Bonn in the academic year 1983/4 and in part at the University of Strathclyde, Glasgow. Their aim was to introduce graduate students of both mathematics and physics to the time dependent theory of linear equations of mathematical physics and to classical scattering theory. Using Hilbert space methods, the theory was developed so that the asymptotic behaviour of the solutions for large t could be discussed. The presentation of the theory is made using equations that are of particular interest for the mathematician and the physicist. The wave equation is considered, as are first order systems of linear acoustics and electromagnetism. This is followed by a discussion of a Schrodinger equation with a Coulomb potential, the equations of linear elasticity, the plate equation, and the equations of thermoelasticity. The reader is assumed to have a basic knowledge of functional analysis. However, for convenience, the required background is presented in the second chapter |
Beschreibung: | 1 Online-Ressource (VIII, 266 S.) |
ISBN: | 9783663106494 9783519021025 |
DOI: | 10.1007/978-3-663-10649-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042438664 | ||
003 | DE-604 | ||
005 | 20171220 | ||
007 | cr|uuu---uuuuu | ||
008 | 150320s1986 |||| o||u| ||||||ger d | ||
020 | |a 9783663106494 |c Online |9 978-3-663-10649-4 | ||
020 | |a 9783519021025 |c Print |9 978-3-519-02102-5 | ||
024 | 7 | |a 10.1007/978-3-663-10649-4 |2 doi | |
035 | |a (OCoLC)864092472 | ||
035 | |a (DE-599)BVBBV042438664 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a ger | |
049 | |a DE-91 |a DE-634 |a DE-92 |a DE-573 |a DE-706 |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 620 |2 23 | |
084 | |a PHY 013f |2 stub | ||
084 | |a TEC 000 |2 stub | ||
084 | |a DAT 000 |2 stub | ||
084 | |a MAT 341f |2 stub | ||
100 | 1 | |a Leis, Rolf |e Verfasser |4 aut | |
245 | 1 | 0 | |a Initial Boundary Value Problems in Mathematical Physics |c von Rolf Leis |
264 | 1 | |a Wiesbaden |b Vieweg+Teubner Verlag |c 1986 | |
300 | |a 1 Online-Ressource (VIII, 266 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a The lectures presented in this book were given at the University of Bonn in the academic year 1983/4 and in part at the University of Strathclyde, Glasgow. Their aim was to introduce graduate students of both mathematics and physics to the time dependent theory of linear equations of mathematical physics and to classical scattering theory. Using Hilbert space methods, the theory was developed so that the asymptotic behaviour of the solutions for large t could be discussed. The presentation of the theory is made using equations that are of particular interest for the mathematician and the physicist. The wave equation is considered, as are first order systems of linear acoustics and electromagnetism. This is followed by a discussion of a Schrodinger equation with a Coulomb potential, the equations of linear elasticity, the plate equation, and the equations of thermoelasticity. The reader is assumed to have a basic knowledge of functional analysis. However, for convenience, the required background is presented in the second chapter | ||
650 | 4 | |a Engineering | |
650 | 4 | |a Engineering, general | |
650 | 4 | |a Ingenieurwissenschaften | |
650 | 0 | 7 | |a Anfangsrandwertproblem |0 (DE-588)4001990-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Anfangswertproblem |0 (DE-588)4001991-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Anfangsrandwertproblem |0 (DE-588)4001990-1 |D s |
689 | 0 | 1 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Anfangswertproblem |0 (DE-588)4001991-3 |D s |
689 | 1 | 1 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 1 | |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-663-10649-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-STI |a ZDB-2-BAD | ||
940 | 1 | |q ZDB-2-STI_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027873994 |
Datensatz im Suchindex
_version_ | 1804153128813068288 |
---|---|
any_adam_object | |
author | Leis, Rolf |
author_facet | Leis, Rolf |
author_role | aut |
author_sort | Leis, Rolf |
author_variant | r l rl |
building | Verbundindex |
bvnumber | BV042438664 |
classification_tum | PHY 013f TEC 000 DAT 000 MAT 341f |
collection | ZDB-2-STI ZDB-2-BAD |
ctrlnum | (OCoLC)864092472 (DE-599)BVBBV042438664 |
dewey-full | 620 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620 |
dewey-search | 620 |
dewey-sort | 3620 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik Technik Technik Informatik Mathematik |
doi_str_mv | 10.1007/978-3-663-10649-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02872nmm a2200529zc 4500</leader><controlfield tag="001">BV042438664</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171220 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150320s1986 |||| o||u| ||||||ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783663106494</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-663-10649-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783519021025</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-519-02102-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-663-10649-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864092472</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042438664</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 013f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">TEC 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 341f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Leis, Rolf</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Initial Boundary Value Problems in Mathematical Physics</subfield><subfield code="c">von Rolf Leis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Wiesbaden</subfield><subfield code="b">Vieweg+Teubner Verlag</subfield><subfield code="c">1986</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 266 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The lectures presented in this book were given at the University of Bonn in the academic year 1983/4 and in part at the University of Strathclyde, Glasgow. Their aim was to introduce graduate students of both mathematics and physics to the time dependent theory of linear equations of mathematical physics and to classical scattering theory. Using Hilbert space methods, the theory was developed so that the asymptotic behaviour of the solutions for large t could be discussed. The presentation of the theory is made using equations that are of particular interest for the mathematician and the physicist. The wave equation is considered, as are first order systems of linear acoustics and electromagnetism. This is followed by a discussion of a Schrodinger equation with a Coulomb potential, the equations of linear elasticity, the plate equation, and the equations of thermoelasticity. The reader is assumed to have a basic knowledge of functional analysis. However, for convenience, the required background is presented in the second chapter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Anfangsrandwertproblem</subfield><subfield code="0">(DE-588)4001990-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Anfangswertproblem</subfield><subfield code="0">(DE-588)4001991-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Anfangsrandwertproblem</subfield><subfield code="0">(DE-588)4001990-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Anfangswertproblem</subfield><subfield code="0">(DE-588)4001991-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-663-10649-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-STI</subfield><subfield code="a">ZDB-2-BAD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-STI_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027873994</subfield></datafield></record></collection> |
id | DE-604.BV042438664 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:41Z |
institution | BVB |
isbn | 9783663106494 9783519021025 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027873994 |
oclc_num | 864092472 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-634 DE-92 DE-573 DE-706 DE-1046 DE-1047 |
owner_facet | DE-91 DE-BY-TUM DE-634 DE-92 DE-573 DE-706 DE-1046 DE-1047 |
physical | 1 Online-Ressource (VIII, 266 S.) |
psigel | ZDB-2-STI ZDB-2-BAD ZDB-2-STI_Archive |
publishDate | 1986 |
publishDateSearch | 1986 |
publishDateSort | 1986 |
publisher | Vieweg+Teubner Verlag |
record_format | marc |
spelling | Leis, Rolf Verfasser aut Initial Boundary Value Problems in Mathematical Physics von Rolf Leis Wiesbaden Vieweg+Teubner Verlag 1986 1 Online-Ressource (VIII, 266 S.) txt rdacontent c rdamedia cr rdacarrier The lectures presented in this book were given at the University of Bonn in the academic year 1983/4 and in part at the University of Strathclyde, Glasgow. Their aim was to introduce graduate students of both mathematics and physics to the time dependent theory of linear equations of mathematical physics and to classical scattering theory. Using Hilbert space methods, the theory was developed so that the asymptotic behaviour of the solutions for large t could be discussed. The presentation of the theory is made using equations that are of particular interest for the mathematician and the physicist. The wave equation is considered, as are first order systems of linear acoustics and electromagnetism. This is followed by a discussion of a Schrodinger equation with a Coulomb potential, the equations of linear elasticity, the plate equation, and the equations of thermoelasticity. The reader is assumed to have a basic knowledge of functional analysis. However, for convenience, the required background is presented in the second chapter Engineering Engineering, general Ingenieurwissenschaften Anfangsrandwertproblem (DE-588)4001990-1 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Anfangswertproblem (DE-588)4001991-3 gnd rswk-swf Anfangsrandwertproblem (DE-588)4001990-1 s Mathematische Physik (DE-588)4037952-8 s DE-604 Anfangswertproblem (DE-588)4001991-3 s https://doi.org/10.1007/978-3-663-10649-4 Verlag Volltext |
spellingShingle | Leis, Rolf Initial Boundary Value Problems in Mathematical Physics Engineering Engineering, general Ingenieurwissenschaften Anfangsrandwertproblem (DE-588)4001990-1 gnd Mathematische Physik (DE-588)4037952-8 gnd Anfangswertproblem (DE-588)4001991-3 gnd |
subject_GND | (DE-588)4001990-1 (DE-588)4037952-8 (DE-588)4001991-3 |
title | Initial Boundary Value Problems in Mathematical Physics |
title_auth | Initial Boundary Value Problems in Mathematical Physics |
title_exact_search | Initial Boundary Value Problems in Mathematical Physics |
title_full | Initial Boundary Value Problems in Mathematical Physics von Rolf Leis |
title_fullStr | Initial Boundary Value Problems in Mathematical Physics von Rolf Leis |
title_full_unstemmed | Initial Boundary Value Problems in Mathematical Physics von Rolf Leis |
title_short | Initial Boundary Value Problems in Mathematical Physics |
title_sort | initial boundary value problems in mathematical physics |
topic | Engineering Engineering, general Ingenieurwissenschaften Anfangsrandwertproblem (DE-588)4001990-1 gnd Mathematische Physik (DE-588)4037952-8 gnd Anfangswertproblem (DE-588)4001991-3 gnd |
topic_facet | Engineering Engineering, general Ingenieurwissenschaften Anfangsrandwertproblem Mathematische Physik Anfangswertproblem |
url | https://doi.org/10.1007/978-3-663-10649-4 |
work_keys_str_mv | AT leisrolf initialboundaryvalueproblemsinmathematicalphysics |