Stability theory: an introduction to the stability of dynamic systems and rigid bodies
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | German |
Veröffentlicht: |
Wiesbaden
Vieweg+Teubner Verlag
1987
|
Ausgabe: | 2nd edition |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | There have been great advances in theory of stability in recent decades due to the requirements of control theory and flight mechanics, for example. We need only mention the theory of A. M. Lyapunov. A number of specialists have given a very mathematical and abstract description of the Lyapunov stability theory which resulted in a 'stability theory of motion' applicable to the kinetics of rigid bodies and systems. The stability theory of elastomechanics was developed independently. However, there have been a number of important developments in recent years, also with respect to this theory, dealing with the following problems: The concept of the 'follower forces', non-conservative loads, respectively, has been introduced in aeroelasticity. A number of prob lems in elastic kinetics that involve pulsating loads or periodically varying parameters has led to new stability questions. So-called 'kinetic' methods have become necessary in elastomechnics in order to determine the stability bound aries. An evaluation of the stability criteria of elastostatics, which have been assumed to be generally valid, has shown that they can only be applied to a limited number of problems under special assumptions. The transition from stability to instability is a kinetic process in elastomechanics. Therefore, the most general and most certain method of determining stability is the kinetic stability criterion even if in special cases the classical stability criteria of elastostatics may remain valid. This will be discussed in detail in Section 2. 3 |
Beschreibung: | 1 Online-Ressource (IX, 359 S.) |
ISBN: | 9783663106487 9783519021056 |
DOI: | 10.1007/978-3-663-10648-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042438663 | ||
003 | DE-604 | ||
005 | 20190130 | ||
007 | cr|uuu---uuuuu | ||
008 | 150320s1987 |||| o||u| ||||||ger d | ||
020 | |a 9783663106487 |c Online |9 978-3-663-10648-7 | ||
020 | |a 9783519021056 |c Print |9 978-3-519-02105-6 | ||
024 | 7 | |a 10.1007/978-3-663-10648-7 |2 doi | |
035 | |a (OCoLC)1198866556 | ||
035 | |a (DE-599)BVBBV042438663 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a ger | |
049 | |a DE-91 |a DE-634 |a DE-92 |a DE-573 |a DE-706 |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 620 |2 23 | |
084 | |a DAT 000 |2 stub | ||
084 | |a TEC 000 |2 stub | ||
100 | 1 | |a Leipholz, Horst |d 1919-1988 |e Verfasser |0 (DE-588)13788785X |4 aut | |
245 | 1 | 0 | |a Stability theory |b an introduction to the stability of dynamic systems and rigid bodies |c von Horst Leipholz |
250 | |a 2nd edition | ||
264 | 1 | |a Wiesbaden |b Vieweg+Teubner Verlag |c 1987 | |
300 | |a 1 Online-Ressource (IX, 359 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a There have been great advances in theory of stability in recent decades due to the requirements of control theory and flight mechanics, for example. We need only mention the theory of A. M. Lyapunov. A number of specialists have given a very mathematical and abstract description of the Lyapunov stability theory which resulted in a 'stability theory of motion' applicable to the kinetics of rigid bodies and systems. The stability theory of elastomechanics was developed independently. However, there have been a number of important developments in recent years, also with respect to this theory, dealing with the following problems: The concept of the 'follower forces', non-conservative loads, respectively, has been introduced in aeroelasticity. A number of prob lems in elastic kinetics that involve pulsating loads or periodically varying parameters has led to new stability questions. So-called 'kinetic' methods have become necessary in elastomechnics in order to determine the stability bound aries. An evaluation of the stability criteria of elastostatics, which have been assumed to be generally valid, has shown that they can only be applied to a limited number of problems under special assumptions. The transition from stability to instability is a kinetic process in elastomechanics. Therefore, the most general and most certain method of determining stability is the kinetic stability criterion even if in special cases the classical stability criteria of elastostatics may remain valid. This will be discussed in detail in Section 2. 3 | ||
650 | 4 | |a Engineering | |
650 | 4 | |a Engineering, general | |
650 | 4 | |a Ingenieurwissenschaften | |
650 | 0 | 7 | |a Körper |g Physik |0 (DE-588)4164425-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stabilität |0 (DE-588)4056693-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Systemanalyse |0 (DE-588)4116673-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Stabilität |0 (DE-588)4056693-6 |D s |
689 | 0 | 1 | |a Körper |g Physik |0 (DE-588)4164425-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Systemanalyse |0 (DE-588)4116673-5 |D s |
689 | 1 | 1 | |a Stabilität |0 (DE-588)4056693-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-663-10648-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-STI |a ZDB-2-BAD | ||
940 | 1 | |q ZDB-2-STI_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027873993 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153128808873984 |
---|---|
any_adam_object | |
author | Leipholz, Horst 1919-1988 |
author_GND | (DE-588)13788785X |
author_facet | Leipholz, Horst 1919-1988 |
author_role | aut |
author_sort | Leipholz, Horst 1919-1988 |
author_variant | h l hl |
building | Verbundindex |
bvnumber | BV042438663 |
classification_tum | DAT 000 TEC 000 |
collection | ZDB-2-STI ZDB-2-BAD |
ctrlnum | (OCoLC)1198866556 (DE-599)BVBBV042438663 |
dewey-full | 620 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620 |
dewey-search | 620 |
dewey-sort | 3620 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Technik Technik Informatik |
doi_str_mv | 10.1007/978-3-663-10648-7 |
edition | 2nd edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03547nmm a2200541zc 4500</leader><controlfield tag="001">BV042438663</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190130 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150320s1987 |||| o||u| ||||||ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783663106487</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-663-10648-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783519021056</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-519-02105-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-663-10648-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1198866556</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042438663</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">TEC 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Leipholz, Horst</subfield><subfield code="d">1919-1988</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)13788785X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stability theory</subfield><subfield code="b">an introduction to the stability of dynamic systems and rigid bodies</subfield><subfield code="c">von Horst Leipholz</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Wiesbaden</subfield><subfield code="b">Vieweg+Teubner Verlag</subfield><subfield code="c">1987</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 359 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">There have been great advances in theory of stability in recent decades due to the requirements of control theory and flight mechanics, for example. We need only mention the theory of A. M. Lyapunov. A number of specialists have given a very mathematical and abstract description of the Lyapunov stability theory which resulted in a 'stability theory of motion' applicable to the kinetics of rigid bodies and systems. The stability theory of elastomechanics was developed independently. However, there have been a number of important developments in recent years, also with respect to this theory, dealing with the following problems: The concept of the 'follower forces', non-conservative loads, respectively, has been introduced in aeroelasticity. A number of prob lems in elastic kinetics that involve pulsating loads or periodically varying parameters has led to new stability questions. So-called 'kinetic' methods have become necessary in elastomechnics in order to determine the stability bound aries. An evaluation of the stability criteria of elastostatics, which have been assumed to be generally valid, has shown that they can only be applied to a limited number of problems under special assumptions. The transition from stability to instability is a kinetic process in elastomechanics. Therefore, the most general and most certain method of determining stability is the kinetic stability criterion even if in special cases the classical stability criteria of elastostatics may remain valid. This will be discussed in detail in Section 2. 3</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Körper</subfield><subfield code="g">Physik</subfield><subfield code="0">(DE-588)4164425-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stabilität</subfield><subfield code="0">(DE-588)4056693-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Systemanalyse</subfield><subfield code="0">(DE-588)4116673-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stabilität</subfield><subfield code="0">(DE-588)4056693-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Körper</subfield><subfield code="g">Physik</subfield><subfield code="0">(DE-588)4164425-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Systemanalyse</subfield><subfield code="0">(DE-588)4116673-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Stabilität</subfield><subfield code="0">(DE-588)4056693-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-663-10648-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-STI</subfield><subfield code="a">ZDB-2-BAD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-STI_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027873993</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042438663 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:41Z |
institution | BVB |
isbn | 9783663106487 9783519021056 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027873993 |
oclc_num | 1198866556 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-634 DE-92 DE-573 DE-706 DE-1046 DE-1047 |
owner_facet | DE-91 DE-BY-TUM DE-634 DE-92 DE-573 DE-706 DE-1046 DE-1047 |
physical | 1 Online-Ressource (IX, 359 S.) |
psigel | ZDB-2-STI ZDB-2-BAD ZDB-2-STI_Archive |
publishDate | 1987 |
publishDateSearch | 1987 |
publishDateSort | 1987 |
publisher | Vieweg+Teubner Verlag |
record_format | marc |
spelling | Leipholz, Horst 1919-1988 Verfasser (DE-588)13788785X aut Stability theory an introduction to the stability of dynamic systems and rigid bodies von Horst Leipholz 2nd edition Wiesbaden Vieweg+Teubner Verlag 1987 1 Online-Ressource (IX, 359 S.) txt rdacontent c rdamedia cr rdacarrier There have been great advances in theory of stability in recent decades due to the requirements of control theory and flight mechanics, for example. We need only mention the theory of A. M. Lyapunov. A number of specialists have given a very mathematical and abstract description of the Lyapunov stability theory which resulted in a 'stability theory of motion' applicable to the kinetics of rigid bodies and systems. The stability theory of elastomechanics was developed independently. However, there have been a number of important developments in recent years, also with respect to this theory, dealing with the following problems: The concept of the 'follower forces', non-conservative loads, respectively, has been introduced in aeroelasticity. A number of prob lems in elastic kinetics that involve pulsating loads or periodically varying parameters has led to new stability questions. So-called 'kinetic' methods have become necessary in elastomechnics in order to determine the stability bound aries. An evaluation of the stability criteria of elastostatics, which have been assumed to be generally valid, has shown that they can only be applied to a limited number of problems under special assumptions. The transition from stability to instability is a kinetic process in elastomechanics. Therefore, the most general and most certain method of determining stability is the kinetic stability criterion even if in special cases the classical stability criteria of elastostatics may remain valid. This will be discussed in detail in Section 2. 3 Engineering Engineering, general Ingenieurwissenschaften Körper Physik (DE-588)4164425-6 gnd rswk-swf Stabilität (DE-588)4056693-6 gnd rswk-swf Systemanalyse (DE-588)4116673-5 gnd rswk-swf Stabilität (DE-588)4056693-6 s Körper Physik (DE-588)4164425-6 s 1\p DE-604 Systemanalyse (DE-588)4116673-5 s 2\p DE-604 https://doi.org/10.1007/978-3-663-10648-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Leipholz, Horst 1919-1988 Stability theory an introduction to the stability of dynamic systems and rigid bodies Engineering Engineering, general Ingenieurwissenschaften Körper Physik (DE-588)4164425-6 gnd Stabilität (DE-588)4056693-6 gnd Systemanalyse (DE-588)4116673-5 gnd |
subject_GND | (DE-588)4164425-6 (DE-588)4056693-6 (DE-588)4116673-5 |
title | Stability theory an introduction to the stability of dynamic systems and rigid bodies |
title_auth | Stability theory an introduction to the stability of dynamic systems and rigid bodies |
title_exact_search | Stability theory an introduction to the stability of dynamic systems and rigid bodies |
title_full | Stability theory an introduction to the stability of dynamic systems and rigid bodies von Horst Leipholz |
title_fullStr | Stability theory an introduction to the stability of dynamic systems and rigid bodies von Horst Leipholz |
title_full_unstemmed | Stability theory an introduction to the stability of dynamic systems and rigid bodies von Horst Leipholz |
title_short | Stability theory |
title_sort | stability theory an introduction to the stability of dynamic systems and rigid bodies |
title_sub | an introduction to the stability of dynamic systems and rigid bodies |
topic | Engineering Engineering, general Ingenieurwissenschaften Körper Physik (DE-588)4164425-6 gnd Stabilität (DE-588)4056693-6 gnd Systemanalyse (DE-588)4116673-5 gnd |
topic_facet | Engineering Engineering, general Ingenieurwissenschaften Körper Physik Stabilität Systemanalyse |
url | https://doi.org/10.1007/978-3-663-10648-7 |
work_keys_str_mv | AT leipholzhorst stabilitytheoryanintroductiontothestabilityofdynamicsystemsandrigidbodies |