Praktische Mathematik für Ingenieure und Physiker:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | German |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1963
|
Ausgabe: | Vierte verbesserte Auflage |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 426 man fordert also Anfangs- und Endordinate der Lösung y (x) im Inter vall (a, b), Abb. 112. An Stelle der Randordinaten (sogenannte erste Randwertaufgabe) lassen sich auch die Randsteigungen y' (a), y' (b) . Y fordern (zweite Randwertaufgabe) oder schließ lich eine Linearkombination zwischen Ordinaten und Steigungen (dritte Randwertaufgabe). Alle jl diese Aufgaben oder auch ihre Kombinationen treten in den Anwendungen auf. . :c Ähnlich wie bei der Anfangswertaufgabe wird Abb. 112 Zur Randwertaufgabe man bei formelmäßiger Lösung versuchen, die in der allgemeinen Lösung enthaltenen freien Integratlonskonstanten aus den beiden Randbedingungen zu bestimmen und so die fragliche Sonderlösung y(x) festzulegen. Prinzipiell scheint sich gegenüber der Anfangswertaufgabe damit kaum etwas geändert zu haben. Bei der Durchführung derartiger Aufgaben aber zeigt sich sehr bald, daß sie im Gegensatz zur Anfangswertaufgabe nicht mehr in jedem Falle lösbar sind. Es treten hier also neue charakteristische Schwierigkeiten auf, zu deren Überwindung besondere Überlegungen notwendig werden. Aber auch die Behandlungsmethoden, insbesondere die uns vornehmlich interessierenden Näherungsverfahren, sind von denen der Anfangswertaufgaben grundverschieden, so daß wir es hier in der Tat mit einem neuen und im übrigen höchst reizvollen Gebiet der praktischen Mathematik zu tun haben, bei dem auch theoretische Fragen mehr als bisher in den Vordergrund treten werden. Die charakteristische Schwierigkeit des Randwertproblems sei an folgendem einfachen Beispiel erläutert. 1. Beispiel: Gegeben sei die - lineare - Differentialgleichung y" + y = 0 mit den Randbedingungen y(O) = 1, y(2) = O. |
Beschreibung: | 1 Online-Ressource (XV, 542 S.) |
ISBN: | 9783642532870 9783642532887 |
DOI: | 10.1007/978-3-642-53287-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042432271 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150320s1963 |||| o||u| ||||||ger d | ||
020 | |a 9783642532870 |c Online |9 978-3-642-53287-0 | ||
020 | |a 9783642532887 |c Print |9 978-3-642-53288-7 | ||
024 | 7 | |a 10.1007/978-3-642-53287-0 |2 doi | |
035 | |a (OCoLC)867181353 | ||
035 | |a (DE-599)BVBBV042432271 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a ger | |
049 | |a DE-91 |a DE-634 |a DE-92 |a DE-573 |a DE-706 |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 519 |2 23 | |
084 | |a TEC 000 |2 stub | ||
084 | |a DAT 000 |2 stub | ||
100 | 1 | |a Zurmühl, R. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Praktische Mathematik für Ingenieure und Physiker |c von R. Zurmühl |
250 | |a Vierte verbesserte Auflage | ||
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1963 | |
300 | |a 1 Online-Ressource (XV, 542 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a 426 man fordert also Anfangs- und Endordinate der Lösung y (x) im Inter vall (a, b), Abb. 112. An Stelle der Randordinaten (sogenannte erste Randwertaufgabe) lassen sich auch die Randsteigungen y' (a), y' (b) . Y fordern (zweite Randwertaufgabe) oder schließ lich eine Linearkombination zwischen Ordinaten und Steigungen (dritte Randwertaufgabe). Alle jl diese Aufgaben oder auch ihre Kombinationen treten in den Anwendungen auf. . :c Ähnlich wie bei der Anfangswertaufgabe wird Abb. 112 Zur Randwertaufgabe man bei formelmäßiger Lösung versuchen, die in der allgemeinen Lösung enthaltenen freien Integratlonskonstanten aus den beiden Randbedingungen zu bestimmen und so die fragliche Sonderlösung y(x) festzulegen. Prinzipiell scheint sich gegenüber der Anfangswertaufgabe damit kaum etwas geändert zu haben. Bei der Durchführung derartiger Aufgaben aber zeigt sich sehr bald, daß sie im Gegensatz zur Anfangswertaufgabe nicht mehr in jedem Falle lösbar sind. Es treten hier also neue charakteristische Schwierigkeiten auf, zu deren Überwindung besondere Überlegungen notwendig werden. Aber auch die Behandlungsmethoden, insbesondere die uns vornehmlich interessierenden Näherungsverfahren, sind von denen der Anfangswertaufgaben grundverschieden, so daß wir es hier in der Tat mit einem neuen und im übrigen höchst reizvollen Gebiet der praktischen Mathematik zu tun haben, bei dem auch theoretische Fragen mehr als bisher in den Vordergrund treten werden. Die charakteristische Schwierigkeit des Randwertproblems sei an folgendem einfachen Beispiel erläutert. 1. Beispiel: Gegeben sei die - lineare - Differentialgleichung y" + y = 0 mit den Randbedingungen y(O) = 1, y(2) = O. | ||
650 | 4 | |a Engineering | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Physics | |
650 | 4 | |a Engineering mathematics | |
650 | 4 | |a Appl.Mathematics/Computational Methods of Engineering | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Engineering, general | |
650 | 4 | |a Physics, general | |
650 | 4 | |a Ingenieurwissenschaften | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerische Mathematik |0 (DE-588)4042805-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Praktische Mathematik |0 (DE-588)4175585-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Angewandte Mathematik |0 (DE-588)4142443-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ingenieurwissenschaften |0 (DE-588)4137304-2 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 0 | 1 | |a Ingenieurwissenschaften |0 (DE-588)4137304-2 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Numerische Mathematik |0 (DE-588)4042805-9 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
689 | 2 | 0 | |a Praktische Mathematik |0 (DE-588)4175585-6 |D s |
689 | 2 | |8 4\p |5 DE-604 | |
689 | 3 | 0 | |a Angewandte Mathematik |0 (DE-588)4142443-8 |D s |
689 | 3 | |8 5\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-53287-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-STI |a ZDB-2-BAD | ||
940 | 1 | |q ZDB-2-STI_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027867602 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153116216524800 |
---|---|
any_adam_object | |
author | Zurmühl, R. |
author_facet | Zurmühl, R. |
author_role | aut |
author_sort | Zurmühl, R. |
author_variant | r z rz |
building | Verbundindex |
bvnumber | BV042432271 |
classification_tum | TEC 000 DAT 000 |
collection | ZDB-2-STI ZDB-2-BAD |
ctrlnum | (OCoLC)867181353 (DE-599)BVBBV042432271 |
dewey-full | 519 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519 |
dewey-search | 519 |
dewey-sort | 3519 |
dewey-tens | 510 - Mathematics |
discipline | Technik Technik Informatik Mathematik |
doi_str_mv | 10.1007/978-3-642-53287-0 |
edition | Vierte verbesserte Auflage |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04533nmm a2200733zc 4500</leader><controlfield tag="001">BV042432271</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150320s1963 |||| o||u| ||||||ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642532870</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-53287-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642532887</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-53288-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-53287-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)867181353</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042432271</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">TEC 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zurmühl, R.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Praktische Mathematik für Ingenieure und Physiker</subfield><subfield code="c">von R. Zurmühl</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Vierte verbesserte Auflage</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1963</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 542 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">426 man fordert also Anfangs- und Endordinate der Lösung y (x) im Inter vall (a, b), Abb. 112. An Stelle der Randordinaten (sogenannte erste Randwertaufgabe) lassen sich auch die Randsteigungen y' (a), y' (b) . Y fordern (zweite Randwertaufgabe) oder schließ lich eine Linearkombination zwischen Ordinaten und Steigungen (dritte Randwertaufgabe). Alle jl diese Aufgaben oder auch ihre Kombinationen treten in den Anwendungen auf. . :c Ähnlich wie bei der Anfangswertaufgabe wird Abb. 112 Zur Randwertaufgabe man bei formelmäßiger Lösung versuchen, die in der allgemeinen Lösung enthaltenen freien Integratlonskonstanten aus den beiden Randbedingungen zu bestimmen und so die fragliche Sonderlösung y(x) festzulegen. Prinzipiell scheint sich gegenüber der Anfangswertaufgabe damit kaum etwas geändert zu haben. Bei der Durchführung derartiger Aufgaben aber zeigt sich sehr bald, daß sie im Gegensatz zur Anfangswertaufgabe nicht mehr in jedem Falle lösbar sind. Es treten hier also neue charakteristische Schwierigkeiten auf, zu deren Überwindung besondere Überlegungen notwendig werden. Aber auch die Behandlungsmethoden, insbesondere die uns vornehmlich interessierenden Näherungsverfahren, sind von denen der Anfangswertaufgaben grundverschieden, so daß wir es hier in der Tat mit einem neuen und im übrigen höchst reizvollen Gebiet der praktischen Mathematik zu tun haben, bei dem auch theoretische Fragen mehr als bisher in den Vordergrund treten werden. Die charakteristische Schwierigkeit des Randwertproblems sei an folgendem einfachen Beispiel erläutert. 1. Beispiel: Gegeben sei die - lineare - Differentialgleichung y" + y = 0 mit den Randbedingungen y(O) = 1, y(2) = O.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Appl.Mathematics/Computational Methods of Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Praktische Mathematik</subfield><subfield code="0">(DE-588)4175585-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Angewandte Mathematik</subfield><subfield code="0">(DE-588)4142443-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ingenieurwissenschaften</subfield><subfield code="0">(DE-588)4137304-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Ingenieurwissenschaften</subfield><subfield code="0">(DE-588)4137304-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Praktische Mathematik</subfield><subfield code="0">(DE-588)4175585-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Angewandte Mathematik</subfield><subfield code="0">(DE-588)4142443-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-53287-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-STI</subfield><subfield code="a">ZDB-2-BAD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-STI_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027867602</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV042432271 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:29Z |
institution | BVB |
isbn | 9783642532870 9783642532887 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027867602 |
oclc_num | 867181353 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-634 DE-92 DE-573 DE-706 DE-1046 DE-1047 |
owner_facet | DE-91 DE-BY-TUM DE-634 DE-92 DE-573 DE-706 DE-1046 DE-1047 |
physical | 1 Online-Ressource (XV, 542 S.) |
psigel | ZDB-2-STI ZDB-2-BAD ZDB-2-STI_Archive |
publishDate | 1963 |
publishDateSearch | 1963 |
publishDateSort | 1963 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
spelling | Zurmühl, R. Verfasser aut Praktische Mathematik für Ingenieure und Physiker von R. Zurmühl Vierte verbesserte Auflage Berlin, Heidelberg Springer Berlin Heidelberg 1963 1 Online-Ressource (XV, 542 S.) txt rdacontent c rdamedia cr rdacarrier 426 man fordert also Anfangs- und Endordinate der Lösung y (x) im Inter vall (a, b), Abb. 112. An Stelle der Randordinaten (sogenannte erste Randwertaufgabe) lassen sich auch die Randsteigungen y' (a), y' (b) . Y fordern (zweite Randwertaufgabe) oder schließ lich eine Linearkombination zwischen Ordinaten und Steigungen (dritte Randwertaufgabe). Alle jl diese Aufgaben oder auch ihre Kombinationen treten in den Anwendungen auf. . :c Ähnlich wie bei der Anfangswertaufgabe wird Abb. 112 Zur Randwertaufgabe man bei formelmäßiger Lösung versuchen, die in der allgemeinen Lösung enthaltenen freien Integratlonskonstanten aus den beiden Randbedingungen zu bestimmen und so die fragliche Sonderlösung y(x) festzulegen. Prinzipiell scheint sich gegenüber der Anfangswertaufgabe damit kaum etwas geändert zu haben. Bei der Durchführung derartiger Aufgaben aber zeigt sich sehr bald, daß sie im Gegensatz zur Anfangswertaufgabe nicht mehr in jedem Falle lösbar sind. Es treten hier also neue charakteristische Schwierigkeiten auf, zu deren Überwindung besondere Überlegungen notwendig werden. Aber auch die Behandlungsmethoden, insbesondere die uns vornehmlich interessierenden Näherungsverfahren, sind von denen der Anfangswertaufgaben grundverschieden, so daß wir es hier in der Tat mit einem neuen und im übrigen höchst reizvollen Gebiet der praktischen Mathematik zu tun haben, bei dem auch theoretische Fragen mehr als bisher in den Vordergrund treten werden. Die charakteristische Schwierigkeit des Randwertproblems sei an folgendem einfachen Beispiel erläutert. 1. Beispiel: Gegeben sei die - lineare - Differentialgleichung y" + y = 0 mit den Randbedingungen y(O) = 1, y(2) = O. Engineering Mathematics Physics Engineering mathematics Appl.Mathematics/Computational Methods of Engineering Mathematics, general Engineering, general Physics, general Ingenieurwissenschaften Mathematik Mathematik (DE-588)4037944-9 gnd rswk-swf Numerische Mathematik (DE-588)4042805-9 gnd rswk-swf Praktische Mathematik (DE-588)4175585-6 gnd rswk-swf Angewandte Mathematik (DE-588)4142443-8 gnd rswk-swf Ingenieurwissenschaften (DE-588)4137304-2 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content Mathematik (DE-588)4037944-9 s Ingenieurwissenschaften (DE-588)4137304-2 s 2\p DE-604 Numerische Mathematik (DE-588)4042805-9 s 3\p DE-604 Praktische Mathematik (DE-588)4175585-6 s 4\p DE-604 Angewandte Mathematik (DE-588)4142443-8 s 5\p DE-604 https://doi.org/10.1007/978-3-642-53287-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Zurmühl, R. Praktische Mathematik für Ingenieure und Physiker Engineering Mathematics Physics Engineering mathematics Appl.Mathematics/Computational Methods of Engineering Mathematics, general Engineering, general Physics, general Ingenieurwissenschaften Mathematik Mathematik (DE-588)4037944-9 gnd Numerische Mathematik (DE-588)4042805-9 gnd Praktische Mathematik (DE-588)4175585-6 gnd Angewandte Mathematik (DE-588)4142443-8 gnd Ingenieurwissenschaften (DE-588)4137304-2 gnd |
subject_GND | (DE-588)4037944-9 (DE-588)4042805-9 (DE-588)4175585-6 (DE-588)4142443-8 (DE-588)4137304-2 (DE-588)4151278-9 |
title | Praktische Mathematik für Ingenieure und Physiker |
title_auth | Praktische Mathematik für Ingenieure und Physiker |
title_exact_search | Praktische Mathematik für Ingenieure und Physiker |
title_full | Praktische Mathematik für Ingenieure und Physiker von R. Zurmühl |
title_fullStr | Praktische Mathematik für Ingenieure und Physiker von R. Zurmühl |
title_full_unstemmed | Praktische Mathematik für Ingenieure und Physiker von R. Zurmühl |
title_short | Praktische Mathematik für Ingenieure und Physiker |
title_sort | praktische mathematik fur ingenieure und physiker |
topic | Engineering Mathematics Physics Engineering mathematics Appl.Mathematics/Computational Methods of Engineering Mathematics, general Engineering, general Physics, general Ingenieurwissenschaften Mathematik Mathematik (DE-588)4037944-9 gnd Numerische Mathematik (DE-588)4042805-9 gnd Praktische Mathematik (DE-588)4175585-6 gnd Angewandte Mathematik (DE-588)4142443-8 gnd Ingenieurwissenschaften (DE-588)4137304-2 gnd |
topic_facet | Engineering Mathematics Physics Engineering mathematics Appl.Mathematics/Computational Methods of Engineering Mathematics, general Engineering, general Physics, general Ingenieurwissenschaften Mathematik Numerische Mathematik Praktische Mathematik Angewandte Mathematik Einführung |
url | https://doi.org/10.1007/978-3-642-53287-0 |
work_keys_str_mv | AT zurmuhlr praktischemathematikfuringenieureundphysiker |