Representation of Lie Groups and Special Functions: Recent Advances
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1995
|
Schriftenreihe: | Mathematics and Its Applications
316 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In 1991-1993 our three-volume book "Representation of Lie Groups and Special Functions" was published. When we started to write that book (in 1983), editors of "Kluwer Academic Publishers" expressed their wish for the book to be of encyclopaedic type on the subject. Interrelations between representations of Lie groups and special functions are very wide. This width can be explained by existence of different types of Lie groups and by richness of the theory of their representations. This is why the book, mentioned above, spread to three big volumes. Influence of representations of Lie groups and Lie algebras upon the theory of special functions is lasting. This theory is developing further and methods of the representation theory are of great importance in this development. When the book "Representation of Lie Groups and Special Functions" ,vol. 1-3, was under preparation, new directions of the theory of special functions, connected with group representations, appeared. New important results were discovered in the traditional directions. This impelled us to write a continuation of our three-volume book on relationship between representations and special functions. The result of our further work is the present book. The three-volume book, published before, was devoted mainly to studying classical special functions and orthogonal polynomials by means of matrix elements, Clebsch-Gordan and Racah coefficients of group representations and to generalizations of classical special functions that were dictated by matrix elements of representations |
Beschreibung: | 1 Online-Ressource (XVI, 504 p) |
ISBN: | 9789401728850 9789048144860 |
DOI: | 10.1007/978-94-017-2885-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042424306 | ||
003 | DE-604 | ||
005 | 20171108 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1995 |||| o||u| ||||||eng d | ||
020 | |a 9789401728850 |c Online |9 978-94-017-2885-0 | ||
020 | |a 9789048144860 |c Print |9 978-90-481-4486-0 | ||
024 | 7 | |a 10.1007/978-94-017-2885-0 |2 doi | |
035 | |a (OCoLC)1184503536 | ||
035 | |a (DE-599)BVBBV042424306 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.5 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Vilenkin, Naum Ja. |d 1920-1991 |e Verfasser |0 (DE-588)127328122 |4 aut | |
245 | 1 | 0 | |a Representation of Lie Groups and Special Functions |b Recent Advances |c by N. Ja. Vilenkin, A. U. Klimyk |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1995 | |
300 | |a 1 Online-Ressource (XVI, 504 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematics and Its Applications |v 316 | |
500 | |a In 1991-1993 our three-volume book "Representation of Lie Groups and Special Functions" was published. When we started to write that book (in 1983), editors of "Kluwer Academic Publishers" expressed their wish for the book to be of encyclopaedic type on the subject. Interrelations between representations of Lie groups and special functions are very wide. This width can be explained by existence of different types of Lie groups and by richness of the theory of their representations. This is why the book, mentioned above, spread to three big volumes. Influence of representations of Lie groups and Lie algebras upon the theory of special functions is lasting. This theory is developing further and methods of the representation theory are of great importance in this development. When the book "Representation of Lie Groups and Special Functions" ,vol. 1-3, was under preparation, new directions of the theory of special functions, connected with group representations, appeared. New important results were discovered in the traditional directions. This impelled us to write a continuation of our three-volume book on relationship between representations and special functions. The result of our further work is the present book. The three-volume book, published before, was devoted mainly to studying classical special functions and orthogonal polynomials by means of matrix elements, Clebsch-Gordan and Racah coefficients of group representations and to generalizations of classical special functions that were dictated by matrix elements of representations | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Topological Groups | |
650 | 4 | |a Harmonic analysis | |
650 | 4 | |a Functions, special | |
650 | 4 | |a Special Functions | |
650 | 4 | |a Topological Groups, Lie Groups | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Abstract Harmonic Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Lie-Gruppe |0 (DE-588)4035695-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Darstellungstheorie |0 (DE-588)4148816-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Darstellung |g Mathematik |0 (DE-588)4128289-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spezielle Funktion |0 (DE-588)4182213-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Spezielle Funktion |0 (DE-588)4182213-4 |D s |
689 | 0 | 1 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 0 | 2 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Spezielle Funktion |0 (DE-588)4182213-4 |D s |
689 | 1 | 1 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 1 | 2 | |a Darstellung |g Mathematik |0 (DE-588)4128289-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Klimyk, Anatolij U. |d 1939-2008 |e Sonstige |0 (DE-588)115774580 |4 oth | |
830 | 0 | |a Mathematics and Its Applications |v 316 |w (DE-604)BV008163334 |9 316 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-017-2885-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859723 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153101127516160 |
---|---|
any_adam_object | |
author | Vilenkin, Naum Ja. 1920-1991 |
author_GND | (DE-588)127328122 (DE-588)115774580 |
author_facet | Vilenkin, Naum Ja. 1920-1991 |
author_role | aut |
author_sort | Vilenkin, Naum Ja. 1920-1991 |
author_variant | n j v nj njv |
building | Verbundindex |
bvnumber | BV042424306 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184503536 (DE-599)BVBBV042424306 |
dewey-full | 515.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.5 |
dewey-search | 515.5 |
dewey-sort | 3515.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-017-2885-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04183nmm a2200673zcb4500</leader><controlfield tag="001">BV042424306</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171108 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401728850</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-017-2885-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048144860</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-4486-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-017-2885-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184503536</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424306</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vilenkin, Naum Ja.</subfield><subfield code="d">1920-1991</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)127328122</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Representation of Lie Groups and Special Functions</subfield><subfield code="b">Recent Advances</subfield><subfield code="c">by N. Ja. Vilenkin, A. U. Klimyk</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 504 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">316</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In 1991-1993 our three-volume book "Representation of Lie Groups and Special Functions" was published. When we started to write that book (in 1983), editors of "Kluwer Academic Publishers" expressed their wish for the book to be of encyclopaedic type on the subject. Interrelations between representations of Lie groups and special functions are very wide. This width can be explained by existence of different types of Lie groups and by richness of the theory of their representations. This is why the book, mentioned above, spread to three big volumes. Influence of representations of Lie groups and Lie algebras upon the theory of special functions is lasting. This theory is developing further and methods of the representation theory are of great importance in this development. When the book "Representation of Lie Groups and Special Functions" ,vol. 1-3, was under preparation, new directions of the theory of special functions, connected with group representations, appeared. New important results were discovered in the traditional directions. This impelled us to write a continuation of our three-volume book on relationship between representations and special functions. The result of our further work is the present book. The three-volume book, published before, was devoted mainly to studying classical special functions and orthogonal polynomials by means of matrix elements, Clebsch-Gordan and Racah coefficients of group representations and to generalizations of classical special functions that were dictated by matrix elements of representations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions, special</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Special Functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Abstract Harmonic Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128289-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spezielle Funktion</subfield><subfield code="0">(DE-588)4182213-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Spezielle Funktion</subfield><subfield code="0">(DE-588)4182213-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Spezielle Funktion</subfield><subfield code="0">(DE-588)4182213-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Darstellung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128289-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Klimyk, Anatolij U.</subfield><subfield code="d">1939-2008</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)115774580</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">316</subfield><subfield code="w">(DE-604)BV008163334</subfield><subfield code="9">316</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-017-2885-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859723</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042424306 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:15Z |
institution | BVB |
isbn | 9789401728850 9789048144860 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859723 |
oclc_num | 1184503536 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVI, 504 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Springer Netherlands |
record_format | marc |
series | Mathematics and Its Applications |
series2 | Mathematics and Its Applications |
spelling | Vilenkin, Naum Ja. 1920-1991 Verfasser (DE-588)127328122 aut Representation of Lie Groups and Special Functions Recent Advances by N. Ja. Vilenkin, A. U. Klimyk Dordrecht Springer Netherlands 1995 1 Online-Ressource (XVI, 504 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 316 In 1991-1993 our three-volume book "Representation of Lie Groups and Special Functions" was published. When we started to write that book (in 1983), editors of "Kluwer Academic Publishers" expressed their wish for the book to be of encyclopaedic type on the subject. Interrelations between representations of Lie groups and special functions are very wide. This width can be explained by existence of different types of Lie groups and by richness of the theory of their representations. This is why the book, mentioned above, spread to three big volumes. Influence of representations of Lie groups and Lie algebras upon the theory of special functions is lasting. This theory is developing further and methods of the representation theory are of great importance in this development. When the book "Representation of Lie Groups and Special Functions" ,vol. 1-3, was under preparation, new directions of the theory of special functions, connected with group representations, appeared. New important results were discovered in the traditional directions. This impelled us to write a continuation of our three-volume book on relationship between representations and special functions. The result of our further work is the present book. The three-volume book, published before, was devoted mainly to studying classical special functions and orthogonal polynomials by means of matrix elements, Clebsch-Gordan and Racah coefficients of group representations and to generalizations of classical special functions that were dictated by matrix elements of representations Mathematics Topological Groups Harmonic analysis Functions, special Special Functions Topological Groups, Lie Groups Applications of Mathematics Theoretical, Mathematical and Computational Physics Abstract Harmonic Analysis Mathematik Lie-Gruppe (DE-588)4035695-4 gnd rswk-swf Darstellungstheorie (DE-588)4148816-7 gnd rswk-swf Darstellung Mathematik (DE-588)4128289-9 gnd rswk-swf Spezielle Funktion (DE-588)4182213-4 gnd rswk-swf Spezielle Funktion (DE-588)4182213-4 s Lie-Gruppe (DE-588)4035695-4 s Darstellungstheorie (DE-588)4148816-7 s 1\p DE-604 Darstellung Mathematik (DE-588)4128289-9 s 2\p DE-604 Klimyk, Anatolij U. 1939-2008 Sonstige (DE-588)115774580 oth Mathematics and Its Applications 316 (DE-604)BV008163334 316 https://doi.org/10.1007/978-94-017-2885-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Vilenkin, Naum Ja. 1920-1991 Representation of Lie Groups and Special Functions Recent Advances Mathematics and Its Applications Mathematics Topological Groups Harmonic analysis Functions, special Special Functions Topological Groups, Lie Groups Applications of Mathematics Theoretical, Mathematical and Computational Physics Abstract Harmonic Analysis Mathematik Lie-Gruppe (DE-588)4035695-4 gnd Darstellungstheorie (DE-588)4148816-7 gnd Darstellung Mathematik (DE-588)4128289-9 gnd Spezielle Funktion (DE-588)4182213-4 gnd |
subject_GND | (DE-588)4035695-4 (DE-588)4148816-7 (DE-588)4128289-9 (DE-588)4182213-4 |
title | Representation of Lie Groups and Special Functions Recent Advances |
title_auth | Representation of Lie Groups and Special Functions Recent Advances |
title_exact_search | Representation of Lie Groups and Special Functions Recent Advances |
title_full | Representation of Lie Groups and Special Functions Recent Advances by N. Ja. Vilenkin, A. U. Klimyk |
title_fullStr | Representation of Lie Groups and Special Functions Recent Advances by N. Ja. Vilenkin, A. U. Klimyk |
title_full_unstemmed | Representation of Lie Groups and Special Functions Recent Advances by N. Ja. Vilenkin, A. U. Klimyk |
title_short | Representation of Lie Groups and Special Functions |
title_sort | representation of lie groups and special functions recent advances |
title_sub | Recent Advances |
topic | Mathematics Topological Groups Harmonic analysis Functions, special Special Functions Topological Groups, Lie Groups Applications of Mathematics Theoretical, Mathematical and Computational Physics Abstract Harmonic Analysis Mathematik Lie-Gruppe (DE-588)4035695-4 gnd Darstellungstheorie (DE-588)4148816-7 gnd Darstellung Mathematik (DE-588)4128289-9 gnd Spezielle Funktion (DE-588)4182213-4 gnd |
topic_facet | Mathematics Topological Groups Harmonic analysis Functions, special Special Functions Topological Groups, Lie Groups Applications of Mathematics Theoretical, Mathematical and Computational Physics Abstract Harmonic Analysis Mathematik Lie-Gruppe Darstellungstheorie Darstellung Mathematik Spezielle Funktion |
url | https://doi.org/10.1007/978-94-017-2885-0 |
volume_link | (DE-604)BV008163334 |
work_keys_str_mv | AT vilenkinnaumja representationofliegroupsandspecialfunctionsrecentadvances AT klimykanatoliju representationofliegroupsandspecialfunctionsrecentadvances |