Representation of Lie Groups and Special Functions: Volume 3: Classical and Quantum Groups and Special Functions
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1992
|
Schriftenreihe: | Mathematics and Its Applications (Soviet Series)
75 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Onc service malhemalics has rendered Ihe "Et moil ... si ravait au oomment en revcnir. je n'y serais point aU':' human race. It has put common sense back whcre it belongs, on the topmost shelf next Iules Verne to the dUlty canister IabeUed 'discarded n- sense'. The series is divergent; therefore we may be Eric T. BeU able to do something with it. O. H eaviside Mathematics is a tool for thought, A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other pans and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'are of this series |
Beschreibung: | 1 Online-Ressource (XX, 634 p) |
ISBN: | 9789401728812 9789048141043 |
ISSN: | 0169-6378 |
DOI: | 10.1007/978-94-017-2881-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042424304 | ||
003 | DE-604 | ||
005 | 20230119 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1992 |||| o||u| ||||||eng d | ||
020 | |a 9789401728812 |c Online |9 978-94-017-2881-2 | ||
020 | |a 9789048141043 |c Print |9 978-90-481-4104-3 | ||
024 | 7 | |a 10.1007/978-94-017-2881-2 |2 doi | |
035 | |a (OCoLC)863997050 | ||
035 | |a (DE-599)BVBBV042424304 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.5 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Vilenkin, Naum Ja. |d 1920-1991 |e Verfasser |0 (DE-588)127328122 |4 aut | |
245 | 1 | 0 | |a Representation of Lie Groups and Special Functions |b Volume 3: Classical and Quantum Groups and Special Functions |c by N. Ja. Vilenkin, A. U. Klimyk |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1992 | |
300 | |a 1 Online-Ressource (XX, 634 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and Its Applications (Soviet Series) |v 75 |x 0169-6378 | |
500 | |a Onc service malhemalics has rendered Ihe "Et moil ... si ravait au oomment en revcnir. je n'y serais point aU':' human race. It has put common sense back whcre it belongs, on the topmost shelf next Iules Verne to the dUlty canister IabeUed 'discarded n- sense'. The series is divergent; therefore we may be Eric T. BeU able to do something with it. O. H eaviside Mathematics is a tool for thought, A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other pans and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'are of this series | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Topological Groups | |
650 | 4 | |a Harmonic analysis | |
650 | 4 | |a Integral Transforms | |
650 | 4 | |a Functions, special | |
650 | 4 | |a Special Functions | |
650 | 4 | |a Abstract Harmonic Analysis | |
650 | 4 | |a Topological Groups, Lie Groups | |
650 | 4 | |a Integral Transforms, Operational Calculus | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Klimyk, Anatolij U. |d 1939-2008 |e Sonstige |0 (DE-588)115774580 |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-017-2881-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859721 |
Datensatz im Suchindex
_version_ | 1804153101090816000 |
---|---|
any_adam_object | |
author | Vilenkin, Naum Ja. 1920-1991 |
author_GND | (DE-588)127328122 (DE-588)115774580 |
author_facet | Vilenkin, Naum Ja. 1920-1991 |
author_role | aut |
author_sort | Vilenkin, Naum Ja. 1920-1991 |
author_variant | n j v nj njv |
building | Verbundindex |
bvnumber | BV042424304 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863997050 (DE-599)BVBBV042424304 |
dewey-full | 515.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.5 |
dewey-search | 515.5 |
dewey-sort | 3515.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-017-2881-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02719nmm a2200493zcb4500</leader><controlfield tag="001">BV042424304</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230119 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1992 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401728812</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-017-2881-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048141043</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-4104-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-017-2881-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863997050</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424304</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vilenkin, Naum Ja.</subfield><subfield code="d">1920-1991</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)127328122</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Representation of Lie Groups and Special Functions</subfield><subfield code="b">Volume 3: Classical and Quantum Groups and Special Functions</subfield><subfield code="c">by N. Ja. Vilenkin, A. U. Klimyk</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XX, 634 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications (Soviet Series)</subfield><subfield code="v">75</subfield><subfield code="x">0169-6378</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Onc service malhemalics has rendered Ihe "Et moil ... si ravait au oomment en revcnir. je n'y serais point aU':' human race. It has put common sense back whcre it belongs, on the topmost shelf next Iules Verne to the dUlty canister IabeUed 'discarded n- sense'. The series is divergent; therefore we may be Eric T. BeU able to do something with it. O. H eaviside Mathematics is a tool for thought, A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other pans and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'are of this series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Transforms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions, special</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Special Functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Abstract Harmonic Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Transforms, Operational Calculus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Klimyk, Anatolij U.</subfield><subfield code="d">1939-2008</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)115774580</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-017-2881-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859721</subfield></datafield></record></collection> |
id | DE-604.BV042424304 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:15Z |
institution | BVB |
isbn | 9789401728812 9789048141043 |
issn | 0169-6378 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859721 |
oclc_num | 863997050 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XX, 634 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Mathematics and Its Applications (Soviet Series) |
spelling | Vilenkin, Naum Ja. 1920-1991 Verfasser (DE-588)127328122 aut Representation of Lie Groups and Special Functions Volume 3: Classical and Quantum Groups and Special Functions by N. Ja. Vilenkin, A. U. Klimyk Dordrecht Springer Netherlands 1992 1 Online-Ressource (XX, 634 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications (Soviet Series) 75 0169-6378 Onc service malhemalics has rendered Ihe "Et moil ... si ravait au oomment en revcnir. je n'y serais point aU':' human race. It has put common sense back whcre it belongs, on the topmost shelf next Iules Verne to the dUlty canister IabeUed 'discarded n- sense'. The series is divergent; therefore we may be Eric T. BeU able to do something with it. O. H eaviside Mathematics is a tool for thought, A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other pans and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'are of this series Mathematics Topological Groups Harmonic analysis Integral Transforms Functions, special Special Functions Abstract Harmonic Analysis Topological Groups, Lie Groups Integral Transforms, Operational Calculus Mathematik Klimyk, Anatolij U. 1939-2008 Sonstige (DE-588)115774580 oth https://doi.org/10.1007/978-94-017-2881-2 Verlag Volltext |
spellingShingle | Vilenkin, Naum Ja. 1920-1991 Representation of Lie Groups and Special Functions Volume 3: Classical and Quantum Groups and Special Functions Mathematics Topological Groups Harmonic analysis Integral Transforms Functions, special Special Functions Abstract Harmonic Analysis Topological Groups, Lie Groups Integral Transforms, Operational Calculus Mathematik |
title | Representation of Lie Groups and Special Functions Volume 3: Classical and Quantum Groups and Special Functions |
title_auth | Representation of Lie Groups and Special Functions Volume 3: Classical and Quantum Groups and Special Functions |
title_exact_search | Representation of Lie Groups and Special Functions Volume 3: Classical and Quantum Groups and Special Functions |
title_full | Representation of Lie Groups and Special Functions Volume 3: Classical and Quantum Groups and Special Functions by N. Ja. Vilenkin, A. U. Klimyk |
title_fullStr | Representation of Lie Groups and Special Functions Volume 3: Classical and Quantum Groups and Special Functions by N. Ja. Vilenkin, A. U. Klimyk |
title_full_unstemmed | Representation of Lie Groups and Special Functions Volume 3: Classical and Quantum Groups and Special Functions by N. Ja. Vilenkin, A. U. Klimyk |
title_short | Representation of Lie Groups and Special Functions |
title_sort | representation of lie groups and special functions volume 3 classical and quantum groups and special functions |
title_sub | Volume 3: Classical and Quantum Groups and Special Functions |
topic | Mathematics Topological Groups Harmonic analysis Integral Transforms Functions, special Special Functions Abstract Harmonic Analysis Topological Groups, Lie Groups Integral Transforms, Operational Calculus Mathematik |
topic_facet | Mathematics Topological Groups Harmonic analysis Integral Transforms Functions, special Special Functions Abstract Harmonic Analysis Topological Groups, Lie Groups Integral Transforms, Operational Calculus Mathematik |
url | https://doi.org/10.1007/978-94-017-2881-2 |
work_keys_str_mv | AT vilenkinnaumja representationofliegroupsandspecialfunctionsvolume3classicalandquantumgroupsandspecialfunctions AT klimykanatoliju representationofliegroupsandspecialfunctionsvolume3classicalandquantumgroupsandspecialfunctions |