Random Fields and Stochastic Partial Differential Equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1998
|
Schriftenreihe: | Mathematics and Its Applications
438 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book considers some models described by means of partial differential equations and boundary conditions with chaotic stochastic disturbance. In a framework of stochastic Partial Differential Equations an approach is suggested to generalize solutions of stochastic Boundary Problems. The main topic concerns probabilistic aspects with applications to well-known Random Fields models which are representative for the corresponding stochastic Sobolev spaces. (The term "stochastic" in general indicates involvement of appropriate random elements. ) It assumes certain knowledge in general Analysis and Probability (Hilbert space methods, Schwartz distributions, Fourier transform) . I A very general description of the main problems considered can be given as follows. Suppose, we are considering a random field ~ in a region T ~ Rd which is associated with a chaotic (stochastic) source"' by means of the differential equation (*) in T. A typical chaotic source can be represented by an appropriate random field"' with independent values, i. e. , generalized random function"' = ( cp, 'TJ), cp E C~(T), with independent random variables ( cp, 'fJ) for any test functions cp with disjoint supports. The property of having independent values implies a certain "roughness" of the random field "' which can only be treated functionally as a very irregular Schwarz distribution. With the lack of a proper development of nonlinear analyses for generalized functions, let us limit ourselves to the 1 For related material see, for example, J. L. Lions, E. |
Beschreibung: | 1 Online-Ressource (VII, 232 p) |
ISBN: | 9789401728386 9789048150090 |
DOI: | 10.1007/978-94-017-2838-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042424303 | ||
003 | DE-604 | ||
005 | 20180110 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1998 |||| o||u| ||||||eng d | ||
020 | |a 9789401728386 |c Online |9 978-94-017-2838-6 | ||
020 | |a 9789048150090 |c Print |9 978-90-481-5009-0 | ||
024 | 7 | |a 10.1007/978-94-017-2838-6 |2 doi | |
035 | |a (OCoLC)1184491606 | ||
035 | |a (DE-599)BVBBV042424303 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Rozanov, Yu. A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Random Fields and Stochastic Partial Differential Equations |c by Yu. A. Rozanov |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1998 | |
300 | |a 1 Online-Ressource (VII, 232 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematics and Its Applications |v 438 | |
500 | |a This book considers some models described by means of partial differential equations and boundary conditions with chaotic stochastic disturbance. In a framework of stochastic Partial Differential Equations an approach is suggested to generalize solutions of stochastic Boundary Problems. The main topic concerns probabilistic aspects with applications to well-known Random Fields models which are representative for the corresponding stochastic Sobolev spaces. (The term "stochastic" in general indicates involvement of appropriate random elements. ) It assumes certain knowledge in general Analysis and Probability (Hilbert space methods, Schwartz distributions, Fourier transform) . I A very general description of the main problems considered can be given as follows. Suppose, we are considering a random field ~ in a region T ~ Rd which is associated with a chaotic (stochastic) source"' by means of the differential equation (*) in T. A typical chaotic source can be represented by an appropriate random field"' with independent values, i. e. , generalized random function"' = ( cp, 'TJ), cp E C~(T), with independent random variables ( cp, 'fJ) for any test functions cp with disjoint supports. The property of having independent values implies a certain "roughness" of the random field "' which can only be treated functionally as a very irregular Schwarz distribution. With the lack of a proper development of nonlinear analyses for generalized functions, let us limit ourselves to the 1 For related material see, for example, J. L. Lions, E. | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Zufälliges Feld |0 (DE-588)4191094-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastische partielle Differentialgleichung |0 (DE-588)4135969-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Stochastische partielle Differentialgleichung |0 (DE-588)4135969-0 |D s |
689 | 0 | 1 | |a Zufälliges Feld |0 (DE-588)4191094-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
830 | 0 | |a Mathematics and Its Applications |v 438 |w (DE-604)BV008163334 |9 438 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-017-2838-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859720 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153101101301760 |
---|---|
any_adam_object | |
author | Rozanov, Yu. A. |
author_facet | Rozanov, Yu. A. |
author_role | aut |
author_sort | Rozanov, Yu. A. |
author_variant | y a r ya yar |
building | Verbundindex |
bvnumber | BV042424303 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184491606 (DE-599)BVBBV042424303 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-017-2838-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03482nmm a2200517zcb4500</leader><controlfield tag="001">BV042424303</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180110 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401728386</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-017-2838-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048150090</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-5009-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-017-2838-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184491606</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424303</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rozanov, Yu. A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Random Fields and Stochastic Partial Differential Equations</subfield><subfield code="c">by Yu. A. Rozanov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VII, 232 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">438</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book considers some models described by means of partial differential equations and boundary conditions with chaotic stochastic disturbance. In a framework of stochastic Partial Differential Equations an approach is suggested to generalize solutions of stochastic Boundary Problems. The main topic concerns probabilistic aspects with applications to well-known Random Fields models which are representative for the corresponding stochastic Sobolev spaces. (The term "stochastic" in general indicates involvement of appropriate random elements. ) It assumes certain knowledge in general Analysis and Probability (Hilbert space methods, Schwartz distributions, Fourier transform) . I A very general description of the main problems considered can be given as follows. Suppose, we are considering a random field ~ in a region T ~ Rd which is associated with a chaotic (stochastic) source"' by means of the differential equation (*) in T. A typical chaotic source can be represented by an appropriate random field"' with independent values, i. e. , generalized random function"' = ( cp, 'TJ), cp E C~(T), with independent random variables ( cp, 'fJ) for any test functions cp with disjoint supports. The property of having independent values implies a certain "roughness" of the random field "' which can only be treated functionally as a very irregular Schwarz distribution. With the lack of a proper development of nonlinear analyses for generalized functions, let us limit ourselves to the 1 For related material see, for example, J. L. Lions, E.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zufälliges Feld</subfield><subfield code="0">(DE-588)4191094-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4135969-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastische partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4135969-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Zufälliges Feld</subfield><subfield code="0">(DE-588)4191094-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">438</subfield><subfield code="w">(DE-604)BV008163334</subfield><subfield code="9">438</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-017-2838-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859720</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042424303 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:15Z |
institution | BVB |
isbn | 9789401728386 9789048150090 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859720 |
oclc_num | 1184491606 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VII, 232 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Springer Netherlands |
record_format | marc |
series | Mathematics and Its Applications |
series2 | Mathematics and Its Applications |
spelling | Rozanov, Yu. A. Verfasser aut Random Fields and Stochastic Partial Differential Equations by Yu. A. Rozanov Dordrecht Springer Netherlands 1998 1 Online-Ressource (VII, 232 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 438 This book considers some models described by means of partial differential equations and boundary conditions with chaotic stochastic disturbance. In a framework of stochastic Partial Differential Equations an approach is suggested to generalize solutions of stochastic Boundary Problems. The main topic concerns probabilistic aspects with applications to well-known Random Fields models which are representative for the corresponding stochastic Sobolev spaces. (The term "stochastic" in general indicates involvement of appropriate random elements. ) It assumes certain knowledge in general Analysis and Probability (Hilbert space methods, Schwartz distributions, Fourier transform) . I A very general description of the main problems considered can be given as follows. Suppose, we are considering a random field ~ in a region T ~ Rd which is associated with a chaotic (stochastic) source"' by means of the differential equation (*) in T. A typical chaotic source can be represented by an appropriate random field"' with independent values, i. e. , generalized random function"' = ( cp, 'TJ), cp E C~(T), with independent random variables ( cp, 'fJ) for any test functions cp with disjoint supports. The property of having independent values implies a certain "roughness" of the random field "' which can only be treated functionally as a very irregular Schwarz distribution. With the lack of a proper development of nonlinear analyses for generalized functions, let us limit ourselves to the 1 For related material see, for example, J. L. Lions, E. Mathematics Differential equations, partial Distribution (Probability theory) Probability Theory and Stochastic Processes Partial Differential Equations Mathematik Zufälliges Feld (DE-588)4191094-1 gnd rswk-swf Stochastische partielle Differentialgleichung (DE-588)4135969-0 gnd rswk-swf Stochastische partielle Differentialgleichung (DE-588)4135969-0 s Zufälliges Feld (DE-588)4191094-1 s 1\p DE-604 Mathematics and Its Applications 438 (DE-604)BV008163334 438 https://doi.org/10.1007/978-94-017-2838-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Rozanov, Yu. A. Random Fields and Stochastic Partial Differential Equations Mathematics and Its Applications Mathematics Differential equations, partial Distribution (Probability theory) Probability Theory and Stochastic Processes Partial Differential Equations Mathematik Zufälliges Feld (DE-588)4191094-1 gnd Stochastische partielle Differentialgleichung (DE-588)4135969-0 gnd |
subject_GND | (DE-588)4191094-1 (DE-588)4135969-0 |
title | Random Fields and Stochastic Partial Differential Equations |
title_auth | Random Fields and Stochastic Partial Differential Equations |
title_exact_search | Random Fields and Stochastic Partial Differential Equations |
title_full | Random Fields and Stochastic Partial Differential Equations by Yu. A. Rozanov |
title_fullStr | Random Fields and Stochastic Partial Differential Equations by Yu. A. Rozanov |
title_full_unstemmed | Random Fields and Stochastic Partial Differential Equations by Yu. A. Rozanov |
title_short | Random Fields and Stochastic Partial Differential Equations |
title_sort | random fields and stochastic partial differential equations |
topic | Mathematics Differential equations, partial Distribution (Probability theory) Probability Theory and Stochastic Processes Partial Differential Equations Mathematik Zufälliges Feld (DE-588)4191094-1 gnd Stochastische partielle Differentialgleichung (DE-588)4135969-0 gnd |
topic_facet | Mathematics Differential equations, partial Distribution (Probability theory) Probability Theory and Stochastic Processes Partial Differential Equations Mathematik Zufälliges Feld Stochastische partielle Differentialgleichung |
url | https://doi.org/10.1007/978-94-017-2838-6 |
volume_link | (DE-604)BV008163334 |
work_keys_str_mv | AT rozanovyua randomfieldsandstochasticpartialdifferentialequations |