Partial Differential Equations and Group Theory: New Perspectives for Applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1994
|
Schriftenreihe: | Mathematics and Its Applications
293 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Ordinary differential control theory (the classical theory) studies input/output relations defined by systems of ordinary differential equations (ODE). The various concepts that can be introduced (controllability, observability, invertibility, etc. ) must be tested on formal objects (matrices, vector fields, etc. ) by means of formal operations (multiplication, bracket, rank, etc. ), but without appealing to the explicit integration (search for trajectories, etc. ) of the given ODE. Many partial results have been recently unified by means of new formal methods coming from differential geometry and differential algebra. However, certain problems (invariance, equivalence, linearization, etc. ) naturally lead to systems of partial differential equations (PDE). More generally, partial differential control theory studies input/output relations defined by systems of PDE (mechanics, thermodynamics, hydrodynamics, plasma physics, robotics, etc. ). One of the aims of this book is to extend the preceding concepts to this new situation, where, of course, functional analysis and/or a dynamical system approach cannot be used. A link will be exhibited between this domain of applied mathematics and the famous 'Backlund problem', existing in the study of solitary waves or solitons. In particular, we shall show how the methods of differential elimination presented here will allow us to determine compatibility conditions on input and/or output as a better understanding of the foundations of control theory. At the same time we shall unify differential geometry and differential algebra in a new framework, called differential algebraic geometry |
Beschreibung: | 1 Online-Ressource (X, 478 p) |
ISBN: | 9789401725392 9789048144327 |
DOI: | 10.1007/978-94-017-2539-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042424298 | ||
003 | DE-604 | ||
005 | 20170926 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1994 |||| o||u| ||||||eng d | ||
020 | |a 9789401725392 |c Online |9 978-94-017-2539-2 | ||
020 | |a 9789048144327 |c Print |9 978-90-481-4432-7 | ||
024 | 7 | |a 10.1007/978-94-017-2539-2 |2 doi | |
035 | |a (OCoLC)1184486264 | ||
035 | |a (DE-599)BVBBV042424298 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516.36 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Pommaret, J.-F. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Partial Differential Equations and Group Theory |b New Perspectives for Applications |c by J.-F. Pommaret |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1994 | |
300 | |a 1 Online-Ressource (X, 478 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematics and Its Applications |v 293 | |
500 | |a Ordinary differential control theory (the classical theory) studies input/output relations defined by systems of ordinary differential equations (ODE). The various concepts that can be introduced (controllability, observability, invertibility, etc. ) must be tested on formal objects (matrices, vector fields, etc. ) by means of formal operations (multiplication, bracket, rank, etc. ), but without appealing to the explicit integration (search for trajectories, etc. ) of the given ODE. Many partial results have been recently unified by means of new formal methods coming from differential geometry and differential algebra. However, certain problems (invariance, equivalence, linearization, etc. ) naturally lead to systems of partial differential equations (PDE). More generally, partial differential control theory studies input/output relations defined by systems of PDE (mechanics, thermodynamics, hydrodynamics, plasma physics, robotics, etc. ). One of the aims of this book is to extend the preceding concepts to this new situation, where, of course, functional analysis and/or a dynamical system approach cannot be used. A link will be exhibited between this domain of applied mathematics and the famous 'Backlund problem', existing in the study of solitary waves or solitons. In particular, we shall show how the methods of differential elimination presented here will allow us to determine compatibility conditions on input and/or output as a better understanding of the foundations of control theory. At the same time we shall unify differential geometry and differential algebra in a new framework, called differential algebraic geometry | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Group theory | |
650 | 4 | |a Systems theory | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Thermodynamics | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Group Theory and Generalizations | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Systems Theory, Control | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gruppe |g Mathematik |0 (DE-588)4022379-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 0 | 1 | |a Gruppe |g Mathematik |0 (DE-588)4022379-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
830 | 0 | |a Mathematics and Its Applications |v 293 |w (DE-604)BV008163334 |9 293 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-017-2539-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859715 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153101096058880 |
---|---|
any_adam_object | |
author | Pommaret, J.-F |
author_facet | Pommaret, J.-F |
author_role | aut |
author_sort | Pommaret, J.-F |
author_variant | j f p jfp |
building | Verbundindex |
bvnumber | BV042424298 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184486264 (DE-599)BVBBV042424298 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-017-2539-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03705nmm a2200565zcb4500</leader><controlfield tag="001">BV042424298</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170926 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401725392</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-017-2539-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048144327</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-4432-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-017-2539-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184486264</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424298</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pommaret, J.-F.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Partial Differential Equations and Group Theory</subfield><subfield code="b">New Perspectives for Applications</subfield><subfield code="c">by J.-F. Pommaret</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 478 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">293</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Ordinary differential control theory (the classical theory) studies input/output relations defined by systems of ordinary differential equations (ODE). The various concepts that can be introduced (controllability, observability, invertibility, etc. ) must be tested on formal objects (matrices, vector fields, etc. ) by means of formal operations (multiplication, bracket, rank, etc. ), but without appealing to the explicit integration (search for trajectories, etc. ) of the given ODE. Many partial results have been recently unified by means of new formal methods coming from differential geometry and differential algebra. However, certain problems (invariance, equivalence, linearization, etc. ) naturally lead to systems of partial differential equations (PDE). More generally, partial differential control theory studies input/output relations defined by systems of PDE (mechanics, thermodynamics, hydrodynamics, plasma physics, robotics, etc. ). One of the aims of this book is to extend the preceding concepts to this new situation, where, of course, functional analysis and/or a dynamical system approach cannot be used. A link will be exhibited between this domain of applied mathematics and the famous 'Backlund problem', existing in the study of solitary waves or solitons. In particular, we shall show how the methods of differential elimination presented here will allow us to determine compatibility conditions on input and/or output as a better understanding of the foundations of control theory. At the same time we shall unify differential geometry and differential algebra in a new framework, called differential algebraic geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory and Generalizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems Theory, Control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppe</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4022379-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Gruppe</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4022379-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">293</subfield><subfield code="w">(DE-604)BV008163334</subfield><subfield code="9">293</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-017-2539-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859715</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042424298 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:15Z |
institution | BVB |
isbn | 9789401725392 9789048144327 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859715 |
oclc_num | 1184486264 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 478 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Springer Netherlands |
record_format | marc |
series | Mathematics and Its Applications |
series2 | Mathematics and Its Applications |
spelling | Pommaret, J.-F. Verfasser aut Partial Differential Equations and Group Theory New Perspectives for Applications by J.-F. Pommaret Dordrecht Springer Netherlands 1994 1 Online-Ressource (X, 478 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 293 Ordinary differential control theory (the classical theory) studies input/output relations defined by systems of ordinary differential equations (ODE). The various concepts that can be introduced (controllability, observability, invertibility, etc. ) must be tested on formal objects (matrices, vector fields, etc. ) by means of formal operations (multiplication, bracket, rank, etc. ), but without appealing to the explicit integration (search for trajectories, etc. ) of the given ODE. Many partial results have been recently unified by means of new formal methods coming from differential geometry and differential algebra. However, certain problems (invariance, equivalence, linearization, etc. ) naturally lead to systems of partial differential equations (PDE). More generally, partial differential control theory studies input/output relations defined by systems of PDE (mechanics, thermodynamics, hydrodynamics, plasma physics, robotics, etc. ). One of the aims of this book is to extend the preceding concepts to this new situation, where, of course, functional analysis and/or a dynamical system approach cannot be used. A link will be exhibited between this domain of applied mathematics and the famous 'Backlund problem', existing in the study of solitary waves or solitons. In particular, we shall show how the methods of differential elimination presented here will allow us to determine compatibility conditions on input and/or output as a better understanding of the foundations of control theory. At the same time we shall unify differential geometry and differential algebra in a new framework, called differential algebraic geometry Mathematics Group theory Systems theory Global differential geometry Thermodynamics Differential Geometry Group Theory and Generalizations Theoretical, Mathematical and Computational Physics Systems Theory, Control Mathematik Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Gruppe Mathematik (DE-588)4022379-6 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 s Gruppe Mathematik (DE-588)4022379-6 s 1\p DE-604 Mathematics and Its Applications 293 (DE-604)BV008163334 293 https://doi.org/10.1007/978-94-017-2539-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Pommaret, J.-F Partial Differential Equations and Group Theory New Perspectives for Applications Mathematics and Its Applications Mathematics Group theory Systems theory Global differential geometry Thermodynamics Differential Geometry Group Theory and Generalizations Theoretical, Mathematical and Computational Physics Systems Theory, Control Mathematik Partielle Differentialgleichung (DE-588)4044779-0 gnd Gruppe Mathematik (DE-588)4022379-6 gnd |
subject_GND | (DE-588)4044779-0 (DE-588)4022379-6 |
title | Partial Differential Equations and Group Theory New Perspectives for Applications |
title_auth | Partial Differential Equations and Group Theory New Perspectives for Applications |
title_exact_search | Partial Differential Equations and Group Theory New Perspectives for Applications |
title_full | Partial Differential Equations and Group Theory New Perspectives for Applications by J.-F. Pommaret |
title_fullStr | Partial Differential Equations and Group Theory New Perspectives for Applications by J.-F. Pommaret |
title_full_unstemmed | Partial Differential Equations and Group Theory New Perspectives for Applications by J.-F. Pommaret |
title_short | Partial Differential Equations and Group Theory |
title_sort | partial differential equations and group theory new perspectives for applications |
title_sub | New Perspectives for Applications |
topic | Mathematics Group theory Systems theory Global differential geometry Thermodynamics Differential Geometry Group Theory and Generalizations Theoretical, Mathematical and Computational Physics Systems Theory, Control Mathematik Partielle Differentialgleichung (DE-588)4044779-0 gnd Gruppe Mathematik (DE-588)4022379-6 gnd |
topic_facet | Mathematics Group theory Systems theory Global differential geometry Thermodynamics Differential Geometry Group Theory and Generalizations Theoretical, Mathematical and Computational Physics Systems Theory, Control Mathematik Partielle Differentialgleichung Gruppe Mathematik |
url | https://doi.org/10.1007/978-94-017-2539-2 |
volume_link | (DE-604)BV008163334 |
work_keys_str_mv | AT pommaretjf partialdifferentialequationsandgrouptheorynewperspectivesforapplications |