Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1996
|
Schriftenreihe: | Mathematics and Its Applications
364 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book is about the light like (degenerate) geometry of submanifolds needed to fill a gap in the general theory of submanifolds. The growing importance of light like hypersurfaces in mathematical physics, in particular their extensive use in relativity, and very limited information available on the general theory of lightlike submanifolds, motivated the present authors, in 1990, to do collaborative research on the subject matter of this book. Based on a series of author's papers (Bejancu [3], Bejancu-Duggal [1,3], Dug gal [13], Duggal-Bejancu [1,2,3]) and several other researchers, this volume was conceived and developed during the Fall '91 and Fall '94 visits of Bejancu to the University of Windsor, Canada. The primary difference between the lightlike submanifold and that of its non degenerate counterpart arises due to the fact that in the first case, the normal vector bundle intersects with the tangent bundle of the submanifold. Thus, one fails to use, in the usual way, the theory of non-degenerate submanifolds (cf. Chen [1]) to define the induced geometric objects (such as linear connection, second fundamental form, Gauss and Weingarten equations) on the light like submanifold. Some work is known on null hypersurfaces and degenerate submanifolds (see an up-to-date list of references on pages 138 and 140 respectively). Our approach, in this book, has the following outstanding features: (a) It is the first-ever attempt of an up-to-date information on null curves, lightlike hypersur faces and submanifolds, consistent with the theory of non-degenerate submanifolds |
Beschreibung: | 1 Online-Ressource (VIII, 303 p) |
ISBN: | 9789401720892 9789048146789 |
DOI: | 10.1007/978-94-017-2089-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042424278 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1996 |||| o||u| ||||||eng d | ||
020 | |a 9789401720892 |c Online |9 978-94-017-2089-2 | ||
020 | |a 9789048146789 |c Print |9 978-90-481-4678-9 | ||
024 | 7 | |a 10.1007/978-94-017-2089-2 |2 doi | |
035 | |a (OCoLC)1184503666 | ||
035 | |a (DE-599)BVBBV042424278 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516.36 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Duggal, Krishan L. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications |c by Krishan L. Duggal, Aurel Bejancu |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1996 | |
300 | |a 1 Online-Ressource (VIII, 303 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and Its Applications |v 364 | |
500 | |a This book is about the light like (degenerate) geometry of submanifolds needed to fill a gap in the general theory of submanifolds. The growing importance of light like hypersurfaces in mathematical physics, in particular their extensive use in relativity, and very limited information available on the general theory of lightlike submanifolds, motivated the present authors, in 1990, to do collaborative research on the subject matter of this book. Based on a series of author's papers (Bejancu [3], Bejancu-Duggal [1,3], Dug gal [13], Duggal-Bejancu [1,2,3]) and several other researchers, this volume was conceived and developed during the Fall '91 and Fall '94 visits of Bejancu to the University of Windsor, Canada. The primary difference between the lightlike submanifold and that of its non degenerate counterpart arises due to the fact that in the first case, the normal vector bundle intersects with the tangent bundle of the submanifold. Thus, one fails to use, in the usual way, the theory of non-degenerate submanifolds (cf. Chen [1]) to define the induced geometric objects (such as linear connection, second fundamental form, Gauss and Weingarten equations) on the light like submanifold. Some work is known on null hypersurfaces and degenerate submanifolds (see an up-to-date list of references on pages 138 and 140 respectively). Our approach, in this book, has the following outstanding features: (a) It is the first-ever attempt of an up-to-date information on null curves, lightlike hypersur faces and submanifolds, consistent with the theory of non-degenerate submanifolds | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Entartete partielle Differentialgleichung |0 (DE-588)4152321-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Untermannigfaltigkeit |0 (DE-588)4128503-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Entartete partielle Differentialgleichung |0 (DE-588)4152321-0 |D s |
689 | 0 | 1 | |a Untermannigfaltigkeit |0 (DE-588)4128503-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Bejancu, Aurel |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-017-2089-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859695 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153101058310144 |
---|---|
any_adam_object | |
author | Duggal, Krishan L. |
author_facet | Duggal, Krishan L. |
author_role | aut |
author_sort | Duggal, Krishan L. |
author_variant | k l d kl kld |
building | Verbundindex |
bvnumber | BV042424278 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184503666 (DE-599)BVBBV042424278 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-017-2089-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03569nmm a2200529zcb4500</leader><controlfield tag="001">BV042424278</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401720892</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-017-2089-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048146789</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-4678-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-017-2089-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184503666</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424278</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Duggal, Krishan L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications</subfield><subfield code="c">by Krishan L. Duggal, Aurel Bejancu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 303 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">364</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book is about the light like (degenerate) geometry of submanifolds needed to fill a gap in the general theory of submanifolds. The growing importance of light like hypersurfaces in mathematical physics, in particular their extensive use in relativity, and very limited information available on the general theory of lightlike submanifolds, motivated the present authors, in 1990, to do collaborative research on the subject matter of this book. Based on a series of author's papers (Bejancu [3], Bejancu-Duggal [1,3], Dug gal [13], Duggal-Bejancu [1,2,3]) and several other researchers, this volume was conceived and developed during the Fall '91 and Fall '94 visits of Bejancu to the University of Windsor, Canada. The primary difference between the lightlike submanifold and that of its non degenerate counterpart arises due to the fact that in the first case, the normal vector bundle intersects with the tangent bundle of the submanifold. Thus, one fails to use, in the usual way, the theory of non-degenerate submanifolds (cf. Chen [1]) to define the induced geometric objects (such as linear connection, second fundamental form, Gauss and Weingarten equations) on the light like submanifold. Some work is known on null hypersurfaces and degenerate submanifolds (see an up-to-date list of references on pages 138 and 140 respectively). Our approach, in this book, has the following outstanding features: (a) It is the first-ever attempt of an up-to-date information on null curves, lightlike hypersur faces and submanifolds, consistent with the theory of non-degenerate submanifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Entartete partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4152321-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Untermannigfaltigkeit</subfield><subfield code="0">(DE-588)4128503-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Entartete partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4152321-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Untermannigfaltigkeit</subfield><subfield code="0">(DE-588)4128503-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bejancu, Aurel</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-017-2089-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859695</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042424278 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:15Z |
institution | BVB |
isbn | 9789401720892 9789048146789 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859695 |
oclc_num | 1184503666 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 303 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Mathematics and Its Applications |
spelling | Duggal, Krishan L. Verfasser aut Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications by Krishan L. Duggal, Aurel Bejancu Dordrecht Springer Netherlands 1996 1 Online-Ressource (VIII, 303 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 364 This book is about the light like (degenerate) geometry of submanifolds needed to fill a gap in the general theory of submanifolds. The growing importance of light like hypersurfaces in mathematical physics, in particular their extensive use in relativity, and very limited information available on the general theory of lightlike submanifolds, motivated the present authors, in 1990, to do collaborative research on the subject matter of this book. Based on a series of author's papers (Bejancu [3], Bejancu-Duggal [1,3], Dug gal [13], Duggal-Bejancu [1,2,3]) and several other researchers, this volume was conceived and developed during the Fall '91 and Fall '94 visits of Bejancu to the University of Windsor, Canada. The primary difference between the lightlike submanifold and that of its non degenerate counterpart arises due to the fact that in the first case, the normal vector bundle intersects with the tangent bundle of the submanifold. Thus, one fails to use, in the usual way, the theory of non-degenerate submanifolds (cf. Chen [1]) to define the induced geometric objects (such as linear connection, second fundamental form, Gauss and Weingarten equations) on the light like submanifold. Some work is known on null hypersurfaces and degenerate submanifolds (see an up-to-date list of references on pages 138 and 140 respectively). Our approach, in this book, has the following outstanding features: (a) It is the first-ever attempt of an up-to-date information on null curves, lightlike hypersur faces and submanifolds, consistent with the theory of non-degenerate submanifolds Mathematics Differential equations, partial Global differential geometry Differential Geometry Theoretical, Mathematical and Computational Physics Partial Differential Equations Mathematik Entartete partielle Differentialgleichung (DE-588)4152321-0 gnd rswk-swf Untermannigfaltigkeit (DE-588)4128503-7 gnd rswk-swf Entartete partielle Differentialgleichung (DE-588)4152321-0 s Untermannigfaltigkeit (DE-588)4128503-7 s 1\p DE-604 Bejancu, Aurel Sonstige oth https://doi.org/10.1007/978-94-017-2089-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Duggal, Krishan L. Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications Mathematics Differential equations, partial Global differential geometry Differential Geometry Theoretical, Mathematical and Computational Physics Partial Differential Equations Mathematik Entartete partielle Differentialgleichung (DE-588)4152321-0 gnd Untermannigfaltigkeit (DE-588)4128503-7 gnd |
subject_GND | (DE-588)4152321-0 (DE-588)4128503-7 |
title | Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications |
title_auth | Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications |
title_exact_search | Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications |
title_full | Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications by Krishan L. Duggal, Aurel Bejancu |
title_fullStr | Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications by Krishan L. Duggal, Aurel Bejancu |
title_full_unstemmed | Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications by Krishan L. Duggal, Aurel Bejancu |
title_short | Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications |
title_sort | lightlike submanifolds of semi riemannian manifolds and applications |
topic | Mathematics Differential equations, partial Global differential geometry Differential Geometry Theoretical, Mathematical and Computational Physics Partial Differential Equations Mathematik Entartete partielle Differentialgleichung (DE-588)4152321-0 gnd Untermannigfaltigkeit (DE-588)4128503-7 gnd |
topic_facet | Mathematics Differential equations, partial Global differential geometry Differential Geometry Theoretical, Mathematical and Computational Physics Partial Differential Equations Mathematik Entartete partielle Differentialgleichung Untermannigfaltigkeit |
url | https://doi.org/10.1007/978-94-017-2089-2 |
work_keys_str_mv | AT duggalkrishanl lightlikesubmanifoldsofsemiriemannianmanifoldsandapplications AT bejancuaurel lightlikesubmanifoldsofsemiriemannianmanifoldsandapplications |