Haar Series and Linear Operators:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1997
|
Schriftenreihe: | Mathematics and Its Applications
367 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In 1909 Alfred Haar introduced into analysis a remarkable system which bears his name. The Haar system is a complete orthonormal system on [0,1] and the Fourier-Haar series for arbitrary continuous function converges uniformly to this function. This volume is devoted to the investigation of the Haar system from the operator theory point of view. The main subjects treated are: classical results on unconditional convergence of the Haar series in modern presentation; Fourier-Haar coefficients; reproducibility; martingales; monotone bases in rearrangement invariant spaces; rearrangements and multipliers with respect to the Haar system; subspaces generated by subsequences of the Haar system; the criterion of equivalence of the Haar and Franklin systems. Audience: This book will be of interest to graduate students and researchers whose work involves functional analysis and operator theory |
Beschreibung: | 1 Online-Ressource (XV, 224 p) |
ISBN: | 9789401717267 9789048146932 |
DOI: | 10.1007/978-94-017-1726-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042424268 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1997 |||| o||u| ||||||eng d | ||
020 | |a 9789401717267 |c Online |9 978-94-017-1726-7 | ||
020 | |a 9789048146932 |c Print |9 978-90-481-4693-2 | ||
024 | 7 | |a 10.1007/978-94-017-1726-7 |2 doi | |
035 | |a (OCoLC)1184487304 | ||
035 | |a (DE-599)BVBBV042424268 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.8 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Novikov, Igor |e Verfasser |4 aut | |
245 | 1 | 0 | |a Haar Series and Linear Operators |c by Igor Novikov, Evgenij Semenov |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1997 | |
300 | |a 1 Online-Ressource (XV, 224 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and Its Applications |v 367 | |
500 | |a In 1909 Alfred Haar introduced into analysis a remarkable system which bears his name. The Haar system is a complete orthonormal system on [0,1] and the Fourier-Haar series for arbitrary continuous function converges uniformly to this function. This volume is devoted to the investigation of the Haar system from the operator theory point of view. The main subjects treated are: classical results on unconditional convergence of the Haar series in modern presentation; Fourier-Haar coefficients; reproducibility; martingales; monotone bases in rearrangement invariant spaces; rearrangements and multipliers with respect to the Haar system; subspaces generated by subsequences of the Haar system; the criterion of equivalence of the Haar and Franklin systems. Audience: This book will be of interest to graduate students and researchers whose work involves functional analysis and operator theory | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Fourier analysis | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Operator theory | |
650 | 4 | |a Real Functions | |
650 | 4 | |a Approximations and Expansions | |
650 | 4 | |a Fourier Analysis | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Operator Theory | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Linearer Operator |0 (DE-588)4167721-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Haar-Funktionensystem |0 (DE-588)4158638-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Haar-Funktionensystem |0 (DE-588)4158638-4 |D s |
689 | 0 | 1 | |a Linearer Operator |0 (DE-588)4167721-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Semenov, Evgenij |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-017-1726-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859685 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153101043630080 |
---|---|
any_adam_object | |
author | Novikov, Igor |
author_facet | Novikov, Igor |
author_role | aut |
author_sort | Novikov, Igor |
author_variant | i n in |
building | Verbundindex |
bvnumber | BV042424268 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184487304 (DE-599)BVBBV042424268 |
dewey-full | 515.8 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.8 |
dewey-search | 515.8 |
dewey-sort | 3515.8 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-017-1726-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02806nmm a2200565zcb4500</leader><controlfield tag="001">BV042424268</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401717267</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-017-1726-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048146932</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-4693-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-017-1726-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184487304</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424268</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.8</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Novikov, Igor</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Haar Series and Linear Operators</subfield><subfield code="c">by Igor Novikov, Evgenij Semenov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 224 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">367</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In 1909 Alfred Haar introduced into analysis a remarkable system which bears his name. The Haar system is a complete orthonormal system on [0,1] and the Fourier-Haar series for arbitrary continuous function converges uniformly to this function. This volume is devoted to the investigation of the Haar system from the operator theory point of view. The main subjects treated are: classical results on unconditional convergence of the Haar series in modern presentation; Fourier-Haar coefficients; reproducibility; martingales; monotone bases in rearrangement invariant spaces; rearrangements and multipliers with respect to the Haar system; subspaces generated by subsequences of the Haar system; the criterion of equivalence of the Haar and Franklin systems. Audience: This book will be of interest to graduate students and researchers whose work involves functional analysis and operator theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real Functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximations and Expansions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Linearer Operator</subfield><subfield code="0">(DE-588)4167721-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Haar-Funktionensystem</subfield><subfield code="0">(DE-588)4158638-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Haar-Funktionensystem</subfield><subfield code="0">(DE-588)4158638-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Linearer Operator</subfield><subfield code="0">(DE-588)4167721-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Semenov, Evgenij</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-017-1726-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859685</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042424268 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:15Z |
institution | BVB |
isbn | 9789401717267 9789048146932 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859685 |
oclc_num | 1184487304 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XV, 224 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Mathematics and Its Applications |
spelling | Novikov, Igor Verfasser aut Haar Series and Linear Operators by Igor Novikov, Evgenij Semenov Dordrecht Springer Netherlands 1997 1 Online-Ressource (XV, 224 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 367 In 1909 Alfred Haar introduced into analysis a remarkable system which bears his name. The Haar system is a complete orthonormal system on [0,1] and the Fourier-Haar series for arbitrary continuous function converges uniformly to this function. This volume is devoted to the investigation of the Haar system from the operator theory point of view. The main subjects treated are: classical results on unconditional convergence of the Haar series in modern presentation; Fourier-Haar coefficients; reproducibility; martingales; monotone bases in rearrangement invariant spaces; rearrangements and multipliers with respect to the Haar system; subspaces generated by subsequences of the Haar system; the criterion of equivalence of the Haar and Franklin systems. Audience: This book will be of interest to graduate students and researchers whose work involves functional analysis and operator theory Mathematics Fourier analysis Functional analysis Operator theory Real Functions Approximations and Expansions Fourier Analysis Functional Analysis Operator Theory Mathematik Linearer Operator (DE-588)4167721-3 gnd rswk-swf Haar-Funktionensystem (DE-588)4158638-4 gnd rswk-swf Haar-Funktionensystem (DE-588)4158638-4 s Linearer Operator (DE-588)4167721-3 s 1\p DE-604 Semenov, Evgenij Sonstige oth https://doi.org/10.1007/978-94-017-1726-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Novikov, Igor Haar Series and Linear Operators Mathematics Fourier analysis Functional analysis Operator theory Real Functions Approximations and Expansions Fourier Analysis Functional Analysis Operator Theory Mathematik Linearer Operator (DE-588)4167721-3 gnd Haar-Funktionensystem (DE-588)4158638-4 gnd |
subject_GND | (DE-588)4167721-3 (DE-588)4158638-4 |
title | Haar Series and Linear Operators |
title_auth | Haar Series and Linear Operators |
title_exact_search | Haar Series and Linear Operators |
title_full | Haar Series and Linear Operators by Igor Novikov, Evgenij Semenov |
title_fullStr | Haar Series and Linear Operators by Igor Novikov, Evgenij Semenov |
title_full_unstemmed | Haar Series and Linear Operators by Igor Novikov, Evgenij Semenov |
title_short | Haar Series and Linear Operators |
title_sort | haar series and linear operators |
topic | Mathematics Fourier analysis Functional analysis Operator theory Real Functions Approximations and Expansions Fourier Analysis Functional Analysis Operator Theory Mathematik Linearer Operator (DE-588)4167721-3 gnd Haar-Funktionensystem (DE-588)4158638-4 gnd |
topic_facet | Mathematics Fourier analysis Functional analysis Operator theory Real Functions Approximations and Expansions Fourier Analysis Functional Analysis Operator Theory Mathematik Linearer Operator Haar-Funktionensystem |
url | https://doi.org/10.1007/978-94-017-1726-7 |
work_keys_str_mv | AT novikovigor haarseriesandlinearoperators AT semenovevgenij haarseriesandlinearoperators |