Degenerate Elliptic Equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1993
|
Schriftenreihe: | Mathematics and Its Applications
258 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 0.1 The partial differential equation (1) (Au)(x) = L aa(x)(Dau)(x) = f(x) m lal9 is called elliptic on a set G, provided that the principal symbol a2m(X,€) = L aa(x)€a lal=2m of the operator A is invertible on G X (~n \ 0); A is called elliptic on G, too. This definition works for systems of equations, for classical pseudo differential operators ("pdo), and for operators on a manifold n. Let us recall some facts concerning elliptic operators. 1 If n is closed, then for any s E ~ , is Fredholm and the following a priori estimate holds (2) 1 2 Introduction If m > 0 and A : C=(O; C') -+ L (0; C') is formally self-adjoint 2 with respect to a smooth positive density, then the closure Ao of A is a self-adjoint operator with discrete spectrum and for the distribution functions of the positive and negative eigenvalues (counted with multiplicity) of Ao one has the following Weyl formula: as t -+ 00, (3) n 2m = t / II N±(1,a2m(x,e))dxde T·O\O (on the right hand side, N±(t,a2m(x,e)) are the distribution functions of the matrix a2m(X,e) : C' -+ CU) |
Beschreibung: | 1 Online-Ressource (XII, 436 p) |
ISBN: | 9789401712156 9789048142828 |
DOI: | 10.1007/978-94-017-1215-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042424240 | ||
003 | DE-604 | ||
005 | 20170918 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1993 |||| o||u| ||||||eng d | ||
020 | |a 9789401712156 |c Online |9 978-94-017-1215-6 | ||
020 | |a 9789048142828 |c Print |9 978-90-481-4282-8 | ||
024 | 7 | |a 10.1007/978-94-017-1215-6 |2 doi | |
035 | |a (OCoLC)879623111 | ||
035 | |a (DE-599)BVBBV042424240 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.353 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Levendorskij, Sergej Z. |d 1951- |e Verfasser |0 (DE-588)13349876X |4 aut | |
245 | 1 | 0 | |a Degenerate Elliptic Equations |c by Serge Levendorskii |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1993 | |
300 | |a 1 Online-Ressource (XII, 436 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematics and Its Applications |v 258 | |
500 | |a 0.1 The partial differential equation (1) (Au)(x) = L aa(x)(Dau)(x) = f(x) m lal9 is called elliptic on a set G, provided that the principal symbol a2m(X,€) = L aa(x)€a lal=2m of the operator A is invertible on G X (~n \ 0); A is called elliptic on G, too. This definition works for systems of equations, for classical pseudo differential operators ("pdo), and for operators on a manifold n. Let us recall some facts concerning elliptic operators. 1 If n is closed, then for any s E ~ , is Fredholm and the following a priori estimate holds (2) 1 2 Introduction If m > 0 and A : C=(O; C') -+ L (0; C') is formally self-adjoint 2 with respect to a smooth positive density, then the closure Ao of A is a self-adjoint operator with discrete spectrum and for the distribution functions of the positive and negative eigenvalues (counted with multiplicity) of Ao one has the following Weyl formula: as t -+ 00, (3) n 2m = t / II N±(1,a2m(x,e))dxde T·O\O (on the right hand side, N±(t,a2m(x,e)) are the distribution functions of the matrix a2m(X,e) : C' -+ CU) | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Integral equations | |
650 | 4 | |a Integral Transforms | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Vibration | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Vibration, Dynamical Systems, Control | |
650 | 4 | |a Quantum Physics | |
650 | 4 | |a Integral Transforms, Operational Calculus | |
650 | 4 | |a Integral Equations | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Quantentheorie | |
650 | 0 | 7 | |a Elliptisch entartete Differentialgleichung |0 (DE-588)4152026-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elliptische Differentialgleichung |0 (DE-588)4014485-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 0 | 1 | |a Elliptische Differentialgleichung |0 (DE-588)4014485-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Elliptisch entartete Differentialgleichung |0 (DE-588)4152026-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
830 | 0 | |a Mathematics and Its Applications |v 258 |w (DE-604)BV008163334 |9 258 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-017-1215-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859657 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153100981764096 |
---|---|
any_adam_object | |
author | Levendorskij, Sergej Z. 1951- |
author_GND | (DE-588)13349876X |
author_facet | Levendorskij, Sergej Z. 1951- |
author_role | aut |
author_sort | Levendorskij, Sergej Z. 1951- |
author_variant | s z l sz szl |
building | Verbundindex |
bvnumber | BV042424240 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879623111 (DE-599)BVBBV042424240 |
dewey-full | 515.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.353 |
dewey-search | 515.353 |
dewey-sort | 3515.353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-017-1215-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03521nmm a2200649zcb4500</leader><controlfield tag="001">BV042424240</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170918 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1993 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401712156</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-017-1215-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048142828</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-4282-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-017-1215-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879623111</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424240</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Levendorskij, Sergej Z.</subfield><subfield code="d">1951-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)13349876X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Degenerate Elliptic Equations</subfield><subfield code="c">by Serge Levendorskii</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 436 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">258</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">0.1 The partial differential equation (1) (Au)(x) = L aa(x)(Dau)(x) = f(x) m lal9 is called elliptic on a set G, provided that the principal symbol a2m(X,€) = L aa(x)€a lal=2m of the operator A is invertible on G X (~n \ 0); A is called elliptic on G, too. This definition works for systems of equations, for classical pseudo differential operators ("pdo), and for operators on a manifold n. Let us recall some facts concerning elliptic operators. 1 If n is closed, then for any s E ~ , is Fredholm and the following a priori estimate holds (2) 1 2 Introduction If m > 0 and A : C=(O; C') -+ L (0; C') is formally self-adjoint 2 with respect to a smooth positive density, then the closure Ao of A is a self-adjoint operator with discrete spectrum and for the distribution functions of the positive and negative eigenvalues (counted with multiplicity) of Ao one has the following Weyl formula: as t -+ 00, (3) n 2m = t / II N±(1,a2m(x,e))dxde T·O\O (on the right hand side, N±(t,a2m(x,e)) are the distribution functions of the matrix a2m(X,e) : C' -+ CU)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Transforms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vibration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vibration, Dynamical Systems, Control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Transforms, Operational Calculus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elliptisch entartete Differentialgleichung</subfield><subfield code="0">(DE-588)4152026-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elliptische Differentialgleichung</subfield><subfield code="0">(DE-588)4014485-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Elliptische Differentialgleichung</subfield><subfield code="0">(DE-588)4014485-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Elliptisch entartete Differentialgleichung</subfield><subfield code="0">(DE-588)4152026-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">258</subfield><subfield code="w">(DE-604)BV008163334</subfield><subfield code="9">258</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-017-1215-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859657</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042424240 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:15Z |
institution | BVB |
isbn | 9789401712156 9789048142828 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859657 |
oclc_num | 879623111 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 436 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Springer Netherlands |
record_format | marc |
series | Mathematics and Its Applications |
series2 | Mathematics and Its Applications |
spelling | Levendorskij, Sergej Z. 1951- Verfasser (DE-588)13349876X aut Degenerate Elliptic Equations by Serge Levendorskii Dordrecht Springer Netherlands 1993 1 Online-Ressource (XII, 436 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 258 0.1 The partial differential equation (1) (Au)(x) = L aa(x)(Dau)(x) = f(x) m lal9 is called elliptic on a set G, provided that the principal symbol a2m(X,€) = L aa(x)€a lal=2m of the operator A is invertible on G X (~n \ 0); A is called elliptic on G, too. This definition works for systems of equations, for classical pseudo differential operators ("pdo), and for operators on a manifold n. Let us recall some facts concerning elliptic operators. 1 If n is closed, then for any s E ~ , is Fredholm and the following a priori estimate holds (2) 1 2 Introduction If m > 0 and A : C=(O; C') -+ L (0; C') is formally self-adjoint 2 with respect to a smooth positive density, then the closure Ao of A is a self-adjoint operator with discrete spectrum and for the distribution functions of the positive and negative eigenvalues (counted with multiplicity) of Ao one has the following Weyl formula: as t -+ 00, (3) n 2m = t / II N±(1,a2m(x,e))dxde T·O\O (on the right hand side, N±(t,a2m(x,e)) are the distribution functions of the matrix a2m(X,e) : C' -+ CU) Mathematics Integral equations Integral Transforms Differential equations, partial Quantum theory Vibration Partial Differential Equations Vibration, Dynamical Systems, Control Quantum Physics Integral Transforms, Operational Calculus Integral Equations Mathematik Quantentheorie Elliptisch entartete Differentialgleichung (DE-588)4152026-9 gnd rswk-swf Elliptische Differentialgleichung (DE-588)4014485-9 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 s Elliptische Differentialgleichung (DE-588)4014485-9 s 1\p DE-604 Elliptisch entartete Differentialgleichung (DE-588)4152026-9 s 2\p DE-604 Mathematics and Its Applications 258 (DE-604)BV008163334 258 https://doi.org/10.1007/978-94-017-1215-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Levendorskij, Sergej Z. 1951- Degenerate Elliptic Equations Mathematics and Its Applications Mathematics Integral equations Integral Transforms Differential equations, partial Quantum theory Vibration Partial Differential Equations Vibration, Dynamical Systems, Control Quantum Physics Integral Transforms, Operational Calculus Integral Equations Mathematik Quantentheorie Elliptisch entartete Differentialgleichung (DE-588)4152026-9 gnd Elliptische Differentialgleichung (DE-588)4014485-9 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd |
subject_GND | (DE-588)4152026-9 (DE-588)4014485-9 (DE-588)4044779-0 |
title | Degenerate Elliptic Equations |
title_auth | Degenerate Elliptic Equations |
title_exact_search | Degenerate Elliptic Equations |
title_full | Degenerate Elliptic Equations by Serge Levendorskii |
title_fullStr | Degenerate Elliptic Equations by Serge Levendorskii |
title_full_unstemmed | Degenerate Elliptic Equations by Serge Levendorskii |
title_short | Degenerate Elliptic Equations |
title_sort | degenerate elliptic equations |
topic | Mathematics Integral equations Integral Transforms Differential equations, partial Quantum theory Vibration Partial Differential Equations Vibration, Dynamical Systems, Control Quantum Physics Integral Transforms, Operational Calculus Integral Equations Mathematik Quantentheorie Elliptisch entartete Differentialgleichung (DE-588)4152026-9 gnd Elliptische Differentialgleichung (DE-588)4014485-9 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd |
topic_facet | Mathematics Integral equations Integral Transforms Differential equations, partial Quantum theory Vibration Partial Differential Equations Vibration, Dynamical Systems, Control Quantum Physics Integral Transforms, Operational Calculus Integral Equations Mathematik Quantentheorie Elliptisch entartete Differentialgleichung Elliptische Differentialgleichung Partielle Differentialgleichung |
url | https://doi.org/10.1007/978-94-017-1215-6 |
volume_link | (DE-604)BV008163334 |
work_keys_str_mv | AT levendorskijsergejz degenerateellipticequations |