Boolean Algebras in Analysis:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
2002
|
Schriftenreihe: | Mathematics and Its Applications
540 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Boolean Algebras in Analysis consists of two parts. The first concerns the general theory at the beginner's level. Presenting classical theorems, the book describes the topologies and uniform structures of Boolean algebras, the basics of complete Boolean algebras and their continuous homomorphisms, as well as lifting theory. The first part also includes an introductory chapter describing the elementary to the theory. The second part deals at a graduate level with the metric theory of Boolean algebras at a graduate level. The covered topics include measure algebras, their sub algebras, and groups of automorphisms. Ample room is allotted to the new classification theorems abstracting the celebrated counterparts by D.Maharam, A.H. Kolmogorov, and V.A.Rokhlin. Boolean Algebras in Analysis is an exceptional definitive source on Boolean algebra as applied to functional analysis and probability. It is intended for all who are interested in new and powerful tools for hard and soft mathematical analysis |
Beschreibung: | 1 Online-Ressource (XXI, 604 p) |
ISBN: | 9789401709361 9789048159611 |
DOI: | 10.1007/978-94-017-0936-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042424229 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2002 |||| o||u| ||||||eng d | ||
020 | |a 9789401709361 |c Online |9 978-94-017-0936-1 | ||
020 | |a 9789048159611 |c Print |9 978-90-481-5961-1 | ||
024 | 7 | |a 10.1007/978-94-017-0936-1 |2 doi | |
035 | |a (OCoLC)1184488763 | ||
035 | |a (DE-599)BVBBV042424229 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.7 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Vladimirov, D. A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Boolean Algebras in Analysis |c by D. A. Vladimirov |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 2002 | |
300 | |a 1 Online-Ressource (XXI, 604 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and Its Applications |v 540 | |
500 | |a Boolean Algebras in Analysis consists of two parts. The first concerns the general theory at the beginner's level. Presenting classical theorems, the book describes the topologies and uniform structures of Boolean algebras, the basics of complete Boolean algebras and their continuous homomorphisms, as well as lifting theory. The first part also includes an introductory chapter describing the elementary to the theory. The second part deals at a graduate level with the metric theory of Boolean algebras at a graduate level. The covered topics include measure algebras, their sub algebras, and groups of automorphisms. Ample room is allotted to the new classification theorems abstracting the celebrated counterparts by D.Maharam, A.H. Kolmogorov, and V.A.Rokhlin. Boolean Algebras in Analysis is an exceptional definitive source on Boolean algebra as applied to functional analysis and probability. It is intended for all who are interested in new and powerful tools for hard and soft mathematical analysis | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Operator theory | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Operator Theory | |
650 | 4 | |a Measure and Integration | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Boolesche Algebra |0 (DE-588)4146280-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Boolesche Algebra |0 (DE-588)4146280-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-017-0936-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859646 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153100949258240 |
---|---|
any_adam_object | |
author | Vladimirov, D. A. |
author_facet | Vladimirov, D. A. |
author_role | aut |
author_sort | Vladimirov, D. A. |
author_variant | d a v da dav |
building | Verbundindex |
bvnumber | BV042424229 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184488763 (DE-599)BVBBV042424229 |
dewey-full | 515.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.7 |
dewey-search | 515.7 |
dewey-sort | 3515.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-017-0936-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02625nmm a2200493zcb4500</leader><controlfield tag="001">BV042424229</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401709361</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-017-0936-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048159611</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-5961-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-017-0936-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184488763</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424229</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vladimirov, D. A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Boolean Algebras in Analysis</subfield><subfield code="c">by D. A. Vladimirov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXI, 604 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">540</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Boolean Algebras in Analysis consists of two parts. The first concerns the general theory at the beginner's level. Presenting classical theorems, the book describes the topologies and uniform structures of Boolean algebras, the basics of complete Boolean algebras and their continuous homomorphisms, as well as lifting theory. The first part also includes an introductory chapter describing the elementary to the theory. The second part deals at a graduate level with the metric theory of Boolean algebras at a graduate level. The covered topics include measure algebras, their sub algebras, and groups of automorphisms. Ample room is allotted to the new classification theorems abstracting the celebrated counterparts by D.Maharam, A.H. Kolmogorov, and V.A.Rokhlin. Boolean Algebras in Analysis is an exceptional definitive source on Boolean algebra as applied to functional analysis and probability. It is intended for all who are interested in new and powerful tools for hard and soft mathematical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measure and Integration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Boolesche Algebra</subfield><subfield code="0">(DE-588)4146280-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Boolesche Algebra</subfield><subfield code="0">(DE-588)4146280-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-017-0936-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859646</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042424229 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:15Z |
institution | BVB |
isbn | 9789401709361 9789048159611 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859646 |
oclc_num | 1184488763 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XXI, 604 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Mathematics and Its Applications |
spelling | Vladimirov, D. A. Verfasser aut Boolean Algebras in Analysis by D. A. Vladimirov Dordrecht Springer Netherlands 2002 1 Online-Ressource (XXI, 604 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 540 Boolean Algebras in Analysis consists of two parts. The first concerns the general theory at the beginner's level. Presenting classical theorems, the book describes the topologies and uniform structures of Boolean algebras, the basics of complete Boolean algebras and their continuous homomorphisms, as well as lifting theory. The first part also includes an introductory chapter describing the elementary to the theory. The second part deals at a graduate level with the metric theory of Boolean algebras at a graduate level. The covered topics include measure algebras, their sub algebras, and groups of automorphisms. Ample room is allotted to the new classification theorems abstracting the celebrated counterparts by D.Maharam, A.H. Kolmogorov, and V.A.Rokhlin. Boolean Algebras in Analysis is an exceptional definitive source on Boolean algebra as applied to functional analysis and probability. It is intended for all who are interested in new and powerful tools for hard and soft mathematical analysis Mathematics Functional analysis Operator theory Functional Analysis Operator Theory Measure and Integration Mathematik Boolesche Algebra (DE-588)4146280-4 gnd rswk-swf Boolesche Algebra (DE-588)4146280-4 s 1\p DE-604 https://doi.org/10.1007/978-94-017-0936-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Vladimirov, D. A. Boolean Algebras in Analysis Mathematics Functional analysis Operator theory Functional Analysis Operator Theory Measure and Integration Mathematik Boolesche Algebra (DE-588)4146280-4 gnd |
subject_GND | (DE-588)4146280-4 |
title | Boolean Algebras in Analysis |
title_auth | Boolean Algebras in Analysis |
title_exact_search | Boolean Algebras in Analysis |
title_full | Boolean Algebras in Analysis by D. A. Vladimirov |
title_fullStr | Boolean Algebras in Analysis by D. A. Vladimirov |
title_full_unstemmed | Boolean Algebras in Analysis by D. A. Vladimirov |
title_short | Boolean Algebras in Analysis |
title_sort | boolean algebras in analysis |
topic | Mathematics Functional analysis Operator theory Functional Analysis Operator Theory Measure and Integration Mathematik Boolesche Algebra (DE-588)4146280-4 gnd |
topic_facet | Mathematics Functional analysis Operator theory Functional Analysis Operator Theory Measure and Integration Mathematik Boolesche Algebra |
url | https://doi.org/10.1007/978-94-017-0936-1 |
work_keys_str_mv | AT vladimirovda booleanalgebrasinanalysis |