Topological Fixed Point Principles for Boundary Value Problems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
2003
|
Schriftenreihe: | Topological Fixed Point Theory and Its Applications
1 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Our book is devoted to the topological fixed point theory both for single-valued and multivalued mappings in locally convex spaces, including its application to boundary value problems for ordinary differential equations (inclusions) and to (multivalued) dynamical systems. It is the first monograph dealing with the topo logical fixed point theory in non-metric spaces. Although the theoretical material was tendentially selected with respect to ap plications, we wished to have a self-consistent text (see the scheme below). There fore, we supplied three appendices concerning almost-periodic and derivo-periodic single-valued {multivalued) functions and (multivalued) fractals. The last topic which is quite new can be also regarded as a contribution to the fixed point theory in hyperspaces. Nevertheless, the reader is assumed to be at least partly famil iar in some related sections with the notions like the Bochner integral, the Au mann multivalued integral, the Arzela-Ascoli lemma, the Gronwall inequality, the Brouwer degree, the Leray-Schauder degree, the topological (covering) dimension, the elemens of homological algebra, ... Otherwise, one can use the recommended literature. Hence, in Chapter I, the topological and analytical background is built. Then, in Chapter II (and partly already in Chapter I), topological principles necessary for applications are developed, namely: the fixed point index theory (resp. the topological degree theory), the Lefschetz and the Nielsen theories both in absolute and relative cases, periodic point theorems, topological essentiality, continuation-type theorems |
Beschreibung: | 1 Online-Ressource (XV, 761 p) |
ISBN: | 9789401704076 9789048163182 |
DOI: | 10.1007/978-94-017-0407-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042424206 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2003 |||| o||u| ||||||eng d | ||
020 | |a 9789401704076 |c Online |9 978-94-017-0407-6 | ||
020 | |a 9789048163182 |c Print |9 978-90-481-6318-2 | ||
024 | 7 | |a 10.1007/978-94-017-0407-6 |2 doi | |
035 | |a (OCoLC)1184489494 | ||
035 | |a (DE-599)BVBBV042424206 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 514.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Andres, Jan |e Verfasser |4 aut | |
245 | 1 | 0 | |a Topological Fixed Point Principles for Boundary Value Problems |c by Jan Andres, Lech Górniewicz |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 2003 | |
300 | |a 1 Online-Ressource (XV, 761 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Topological Fixed Point Theory and Its Applications |v 1 | |
500 | |a Our book is devoted to the topological fixed point theory both for single-valued and multivalued mappings in locally convex spaces, including its application to boundary value problems for ordinary differential equations (inclusions) and to (multivalued) dynamical systems. It is the first monograph dealing with the topo logical fixed point theory in non-metric spaces. Although the theoretical material was tendentially selected with respect to ap plications, we wished to have a self-consistent text (see the scheme below). There fore, we supplied three appendices concerning almost-periodic and derivo-periodic single-valued {multivalued) functions and (multivalued) fractals. The last topic which is quite new can be also regarded as a contribution to the fixed point theory in hyperspaces. Nevertheless, the reader is assumed to be at least partly famil iar in some related sections with the notions like the Bochner integral, the Au mann multivalued integral, the Arzela-Ascoli lemma, the Gronwall inequality, the Brouwer degree, the Leray-Schauder degree, the topological (covering) dimension, the elemens of homological algebra, ... Otherwise, one can use the recommended literature. Hence, in Chapter I, the topological and analytical background is built. Then, in Chapter II (and partly already in Chapter I), topological principles necessary for applications are developed, namely: the fixed point index theory (resp. the topological degree theory), the Lefschetz and the Nielsen theories both in absolute and relative cases, periodic point theorems, topological essentiality, continuation-type theorems | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Integral equations | |
650 | 4 | |a Differential Equations | |
650 | 4 | |a Topology | |
650 | 4 | |a Algebraic topology | |
650 | 4 | |a Algebraic Topology | |
650 | 4 | |a Ordinary Differential Equations | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Integral Equations | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Fixpunkttheorie |0 (DE-588)4293945-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Fixpunkttheorie |0 (DE-588)4293945-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Górniewicz, Lech |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-017-0407-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859623 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153100907315200 |
---|---|
any_adam_object | |
author | Andres, Jan |
author_facet | Andres, Jan |
author_role | aut |
author_sort | Andres, Jan |
author_variant | j a ja |
building | Verbundindex |
bvnumber | BV042424206 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184489494 (DE-599)BVBBV042424206 |
dewey-full | 514.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.2 |
dewey-search | 514.2 |
dewey-sort | 3514.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-017-0407-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03490nmm a2200553zcb4500</leader><controlfield tag="001">BV042424206</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401704076</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-017-0407-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048163182</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-6318-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-017-0407-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184489494</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424206</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Andres, Jan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Topological Fixed Point Principles for Boundary Value Problems</subfield><subfield code="c">by Jan Andres, Lech Górniewicz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 761 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Topological Fixed Point Theory and Its Applications</subfield><subfield code="v">1</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Our book is devoted to the topological fixed point theory both for single-valued and multivalued mappings in locally convex spaces, including its application to boundary value problems for ordinary differential equations (inclusions) and to (multivalued) dynamical systems. It is the first monograph dealing with the topo logical fixed point theory in non-metric spaces. Although the theoretical material was tendentially selected with respect to ap plications, we wished to have a self-consistent text (see the scheme below). There fore, we supplied three appendices concerning almost-periodic and derivo-periodic single-valued {multivalued) functions and (multivalued) fractals. The last topic which is quite new can be also regarded as a contribution to the fixed point theory in hyperspaces. Nevertheless, the reader is assumed to be at least partly famil iar in some related sections with the notions like the Bochner integral, the Au mann multivalued integral, the Arzela-Ascoli lemma, the Gronwall inequality, the Brouwer degree, the Leray-Schauder degree, the topological (covering) dimension, the elemens of homological algebra, ... Otherwise, one can use the recommended literature. Hence, in Chapter I, the topological and analytical background is built. Then, in Chapter II (and partly already in Chapter I), topological principles necessary for applications are developed, namely: the fixed point index theory (resp. the topological degree theory), the Lefschetz and the Nielsen theories both in absolute and relative cases, periodic point theorems, topological essentiality, continuation-type theorems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordinary Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fixpunkttheorie</subfield><subfield code="0">(DE-588)4293945-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fixpunkttheorie</subfield><subfield code="0">(DE-588)4293945-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Górniewicz, Lech</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-017-0407-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859623</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042424206 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:15Z |
institution | BVB |
isbn | 9789401704076 9789048163182 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859623 |
oclc_num | 1184489494 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XV, 761 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Topological Fixed Point Theory and Its Applications |
spelling | Andres, Jan Verfasser aut Topological Fixed Point Principles for Boundary Value Problems by Jan Andres, Lech Górniewicz Dordrecht Springer Netherlands 2003 1 Online-Ressource (XV, 761 p) txt rdacontent c rdamedia cr rdacarrier Topological Fixed Point Theory and Its Applications 1 Our book is devoted to the topological fixed point theory both for single-valued and multivalued mappings in locally convex spaces, including its application to boundary value problems for ordinary differential equations (inclusions) and to (multivalued) dynamical systems. It is the first monograph dealing with the topo logical fixed point theory in non-metric spaces. Although the theoretical material was tendentially selected with respect to ap plications, we wished to have a self-consistent text (see the scheme below). There fore, we supplied three appendices concerning almost-periodic and derivo-periodic single-valued {multivalued) functions and (multivalued) fractals. The last topic which is quite new can be also regarded as a contribution to the fixed point theory in hyperspaces. Nevertheless, the reader is assumed to be at least partly famil iar in some related sections with the notions like the Bochner integral, the Au mann multivalued integral, the Arzela-Ascoli lemma, the Gronwall inequality, the Brouwer degree, the Leray-Schauder degree, the topological (covering) dimension, the elemens of homological algebra, ... Otherwise, one can use the recommended literature. Hence, in Chapter I, the topological and analytical background is built. Then, in Chapter II (and partly already in Chapter I), topological principles necessary for applications are developed, namely: the fixed point index theory (resp. the topological degree theory), the Lefschetz and the Nielsen theories both in absolute and relative cases, periodic point theorems, topological essentiality, continuation-type theorems Mathematics Functional analysis Integral equations Differential Equations Topology Algebraic topology Algebraic Topology Ordinary Differential Equations Functional Analysis Integral Equations Mathematik Fixpunkttheorie (DE-588)4293945-8 gnd rswk-swf Fixpunkttheorie (DE-588)4293945-8 s 1\p DE-604 Górniewicz, Lech Sonstige oth https://doi.org/10.1007/978-94-017-0407-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Andres, Jan Topological Fixed Point Principles for Boundary Value Problems Mathematics Functional analysis Integral equations Differential Equations Topology Algebraic topology Algebraic Topology Ordinary Differential Equations Functional Analysis Integral Equations Mathematik Fixpunkttheorie (DE-588)4293945-8 gnd |
subject_GND | (DE-588)4293945-8 |
title | Topological Fixed Point Principles for Boundary Value Problems |
title_auth | Topological Fixed Point Principles for Boundary Value Problems |
title_exact_search | Topological Fixed Point Principles for Boundary Value Problems |
title_full | Topological Fixed Point Principles for Boundary Value Problems by Jan Andres, Lech Górniewicz |
title_fullStr | Topological Fixed Point Principles for Boundary Value Problems by Jan Andres, Lech Górniewicz |
title_full_unstemmed | Topological Fixed Point Principles for Boundary Value Problems by Jan Andres, Lech Górniewicz |
title_short | Topological Fixed Point Principles for Boundary Value Problems |
title_sort | topological fixed point principles for boundary value problems |
topic | Mathematics Functional analysis Integral equations Differential Equations Topology Algebraic topology Algebraic Topology Ordinary Differential Equations Functional Analysis Integral Equations Mathematik Fixpunkttheorie (DE-588)4293945-8 gnd |
topic_facet | Mathematics Functional analysis Integral equations Differential Equations Topology Algebraic topology Algebraic Topology Ordinary Differential Equations Functional Analysis Integral Equations Mathematik Fixpunkttheorie |
url | https://doi.org/10.1007/978-94-017-0407-6 |
work_keys_str_mv | AT andresjan topologicalfixedpointprinciplesforboundaryvalueproblems AT gorniewiczlech topologicalfixedpointprinciplesforboundaryvalueproblems |