The Semantics and Proof Theory of the Logic of Bunched Implications:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
2002
|
Schriftenreihe: | Applied Logic Series
26 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This is a monograph about logic. Specifically, it presents the mathematical theory of the logic of bunched implications, BI: I consider BI's proof theory, model theory and computation theory. However, the monograph is also about informatics in a sense which I explain. Specifically, it is about mathematical models of resources and logics for reasoning about resources. I begin with an introduction which presents my (background) view of logic from the point of view of informatics, paying particular attention to three logical topics which have arisen from the development of logic within informatics: * Resources as a basis for semantics; * Proof-search as a basis for reasoning; and * The theory of representation of object-logics in a meta-logic. The ensuing development represents a logical theory which draws upon the mathematical, philosophical and computational aspects of logic. Part I presents the logical theory of propositional BI, together with a computational interpretation. Part II presents a corresponding development for predicate BI. In both parts, I develop proof-, model- and type-theoretic analyses. I also provide semantically-motivated computational perspectives, so beginning a mathematical theory of resources. I have not included any analysis, beyond conjecture, of properties such as decidability, finite models, games or complexity. I prefer to leave these matters to other occasions, perhaps in broader contexts |
Beschreibung: | 1 Online-Ressource (XLIX, 290 p) |
ISBN: | 9789401700917 9789048160723 |
ISSN: | 1386-2790 |
DOI: | 10.1007/978-94-017-0091-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042424186 | ||
003 | DE-604 | ||
005 | 20171221 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2002 |||| o||u| ||||||eng d | ||
020 | |a 9789401700917 |c Online |9 978-94-017-0091-7 | ||
020 | |a 9789048160723 |c Print |9 978-90-481-6072-3 | ||
024 | 7 | |a 10.1007/978-94-017-0091-7 |2 doi | |
035 | |a (OCoLC)1002244834 | ||
035 | |a (DE-599)BVBBV042424186 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 160 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Pym, David J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Semantics and Proof Theory of the Logic of Bunched Implications |c by David J. Pym |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 2002 | |
300 | |a 1 Online-Ressource (XLIX, 290 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Applied Logic Series |v 26 |x 1386-2790 | |
500 | |a This is a monograph about logic. Specifically, it presents the mathematical theory of the logic of bunched implications, BI: I consider BI's proof theory, model theory and computation theory. However, the monograph is also about informatics in a sense which I explain. Specifically, it is about mathematical models of resources and logics for reasoning about resources. I begin with an introduction which presents my (background) view of logic from the point of view of informatics, paying particular attention to three logical topics which have arisen from the development of logic within informatics: * Resources as a basis for semantics; * Proof-search as a basis for reasoning; and * The theory of representation of object-logics in a meta-logic. The ensuing development represents a logical theory which draws upon the mathematical, philosophical and computational aspects of logic. Part I presents the logical theory of propositional BI, together with a computational interpretation. Part II presents a corresponding development for predicate BI. In both parts, I develop proof-, model- and type-theoretic analyses. I also provide semantically-motivated computational perspectives, so beginning a mathematical theory of resources. I have not included any analysis, beyond conjecture, of properties such as decidability, finite models, games or complexity. I prefer to leave these matters to other occasions, perhaps in broader contexts | ||
650 | 4 | |a Philosophy (General) | |
650 | 4 | |a Logic | |
650 | 4 | |a Computer science | |
650 | 4 | |a Philosophy | |
650 | 4 | |a Programming Languages, Compilers, Interpreters | |
650 | 4 | |a Informatik | |
650 | 4 | |a Philosophie | |
650 | 0 | 7 | |a Prüftheorie |0 (DE-588)4709925-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Formale Semantik |0 (DE-588)4122144-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Logik |0 (DE-588)4037951-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mathematische Logik |0 (DE-588)4037951-6 |D s |
689 | 0 | 1 | |a Prüftheorie |0 (DE-588)4709925-2 |D s |
689 | 0 | 2 | |a Formale Semantik |0 (DE-588)4122144-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
830 | 0 | |a Applied Logic Series |v 26 |w (DE-604)BV011076498 |9 26 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-017-0091-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859603 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153100849643520 |
---|---|
any_adam_object | |
author | Pym, David J. |
author_facet | Pym, David J. |
author_role | aut |
author_sort | Pym, David J. |
author_variant | d j p dj djp |
building | Verbundindex |
bvnumber | BV042424186 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1002244834 (DE-599)BVBBV042424186 |
dewey-full | 160 |
dewey-hundreds | 100 - Philosophy & psychology |
dewey-ones | 160 - Philosophical logic |
dewey-raw | 160 |
dewey-search | 160 |
dewey-sort | 3160 |
dewey-tens | 160 - Philosophical logic |
discipline | Mathematik Philosophie |
doi_str_mv | 10.1007/978-94-017-0091-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03401nmm a2200553zcb4500</leader><controlfield tag="001">BV042424186</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171221 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401700917</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-017-0091-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048160723</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-6072-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-017-0091-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1002244834</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424186</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">160</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pym, David J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Semantics and Proof Theory of the Logic of Bunched Implications</subfield><subfield code="c">by David J. Pym</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XLIX, 290 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Applied Logic Series</subfield><subfield code="v">26</subfield><subfield code="x">1386-2790</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This is a monograph about logic. Specifically, it presents the mathematical theory of the logic of bunched implications, BI: I consider BI's proof theory, model theory and computation theory. However, the monograph is also about informatics in a sense which I explain. Specifically, it is about mathematical models of resources and logics for reasoning about resources. I begin with an introduction which presents my (background) view of logic from the point of view of informatics, paying particular attention to three logical topics which have arisen from the development of logic within informatics: * Resources as a basis for semantics; * Proof-search as a basis for reasoning; and * The theory of representation of object-logics in a meta-logic. The ensuing development represents a logical theory which draws upon the mathematical, philosophical and computational aspects of logic. Part I presents the logical theory of propositional BI, together with a computational interpretation. Part II presents a corresponding development for predicate BI. In both parts, I develop proof-, model- and type-theoretic analyses. I also provide semantically-motivated computational perspectives, so beginning a mathematical theory of resources. I have not included any analysis, beyond conjecture, of properties such as decidability, finite models, games or complexity. I prefer to leave these matters to other occasions, perhaps in broader contexts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Philosophy (General)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Philosophy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Programming Languages, Compilers, Interpreters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Philosophie</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Prüftheorie</subfield><subfield code="0">(DE-588)4709925-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Formale Semantik</subfield><subfield code="0">(DE-588)4122144-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Prüftheorie</subfield><subfield code="0">(DE-588)4709925-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Formale Semantik</subfield><subfield code="0">(DE-588)4122144-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Applied Logic Series</subfield><subfield code="v">26</subfield><subfield code="w">(DE-604)BV011076498</subfield><subfield code="9">26</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-017-0091-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859603</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042424186 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:15Z |
institution | BVB |
isbn | 9789401700917 9789048160723 |
issn | 1386-2790 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859603 |
oclc_num | 1002244834 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XLIX, 290 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer Netherlands |
record_format | marc |
series | Applied Logic Series |
series2 | Applied Logic Series |
spelling | Pym, David J. Verfasser aut The Semantics and Proof Theory of the Logic of Bunched Implications by David J. Pym Dordrecht Springer Netherlands 2002 1 Online-Ressource (XLIX, 290 p) txt rdacontent c rdamedia cr rdacarrier Applied Logic Series 26 1386-2790 This is a monograph about logic. Specifically, it presents the mathematical theory of the logic of bunched implications, BI: I consider BI's proof theory, model theory and computation theory. However, the monograph is also about informatics in a sense which I explain. Specifically, it is about mathematical models of resources and logics for reasoning about resources. I begin with an introduction which presents my (background) view of logic from the point of view of informatics, paying particular attention to three logical topics which have arisen from the development of logic within informatics: * Resources as a basis for semantics; * Proof-search as a basis for reasoning; and * The theory of representation of object-logics in a meta-logic. The ensuing development represents a logical theory which draws upon the mathematical, philosophical and computational aspects of logic. Part I presents the logical theory of propositional BI, together with a computational interpretation. Part II presents a corresponding development for predicate BI. In both parts, I develop proof-, model- and type-theoretic analyses. I also provide semantically-motivated computational perspectives, so beginning a mathematical theory of resources. I have not included any analysis, beyond conjecture, of properties such as decidability, finite models, games or complexity. I prefer to leave these matters to other occasions, perhaps in broader contexts Philosophy (General) Logic Computer science Philosophy Programming Languages, Compilers, Interpreters Informatik Philosophie Prüftheorie (DE-588)4709925-2 gnd rswk-swf Formale Semantik (DE-588)4122144-8 gnd rswk-swf Mathematische Logik (DE-588)4037951-6 gnd rswk-swf Mathematische Logik (DE-588)4037951-6 s Prüftheorie (DE-588)4709925-2 s Formale Semantik (DE-588)4122144-8 s 1\p DE-604 Applied Logic Series 26 (DE-604)BV011076498 26 https://doi.org/10.1007/978-94-017-0091-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Pym, David J. The Semantics and Proof Theory of the Logic of Bunched Implications Applied Logic Series Philosophy (General) Logic Computer science Philosophy Programming Languages, Compilers, Interpreters Informatik Philosophie Prüftheorie (DE-588)4709925-2 gnd Formale Semantik (DE-588)4122144-8 gnd Mathematische Logik (DE-588)4037951-6 gnd |
subject_GND | (DE-588)4709925-2 (DE-588)4122144-8 (DE-588)4037951-6 |
title | The Semantics and Proof Theory of the Logic of Bunched Implications |
title_auth | The Semantics and Proof Theory of the Logic of Bunched Implications |
title_exact_search | The Semantics and Proof Theory of the Logic of Bunched Implications |
title_full | The Semantics and Proof Theory of the Logic of Bunched Implications by David J. Pym |
title_fullStr | The Semantics and Proof Theory of the Logic of Bunched Implications by David J. Pym |
title_full_unstemmed | The Semantics and Proof Theory of the Logic of Bunched Implications by David J. Pym |
title_short | The Semantics and Proof Theory of the Logic of Bunched Implications |
title_sort | the semantics and proof theory of the logic of bunched implications |
topic | Philosophy (General) Logic Computer science Philosophy Programming Languages, Compilers, Interpreters Informatik Philosophie Prüftheorie (DE-588)4709925-2 gnd Formale Semantik (DE-588)4122144-8 gnd Mathematische Logik (DE-588)4037951-6 gnd |
topic_facet | Philosophy (General) Logic Computer science Philosophy Programming Languages, Compilers, Interpreters Informatik Philosophie Prüftheorie Formale Semantik Mathematische Logik |
url | https://doi.org/10.1007/978-94-017-0091-7 |
volume_link | (DE-604)BV011076498 |
work_keys_str_mv | AT pymdavidj thesemanticsandprooftheoryofthelogicofbunchedimplications |