Partial *-Algebras and Their Operator Realizations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
2002
|
Schriftenreihe: | Mathematics and Its Applications
553 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Algebras of bounded operators are familiar, either as C*-algebras or as von Neumann algebras. A first generalization is the notion of algebras of unbounded operators (O*-algebras), mostly developed by the Leipzig school and in Japan (for a review, we refer to the monographs of K. Schmüdgen [1990] and A. Inoue [1998]). This volume goes one step further, by considering systematically partial *-algebras of unbounded operators (partial O*-algebras) and the underlying algebraic structure, namely, partial *-algebras. It is the first textbook on this topic. The first part is devoted to partial O*-algebras, basic properties, examples, topologies on them. The climax is the generalization to this new framework of the celebrated modular theory of Tomita-Takesaki, one of the cornerstones for the applications to statistical physics. The second part focuses on abstract partial *-algebras and their representation theory, obtaining again generalizations of familiar theorems (Radon-Nikodym, Lebesgue) |
Beschreibung: | 1 Online-Ressource (XX, 522 p) |
ISBN: | 9789401700658 9789048161768 |
DOI: | 10.1007/978-94-017-0065-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042424185 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2002 |||| o||u| ||||||eng d | ||
020 | |a 9789401700658 |c Online |9 978-94-017-0065-8 | ||
020 | |a 9789048161768 |c Print |9 978-90-481-6176-8 | ||
024 | 7 | |a 10.1007/978-94-017-0065-8 |2 doi | |
035 | |a (OCoLC)860233013 | ||
035 | |a (DE-599)BVBBV042424185 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Antoine, Jean-Pierre |e Verfasser |4 aut | |
245 | 1 | 0 | |a Partial *-Algebras and Their Operator Realizations |c by Jean-Pierre Antoine, Atsushi Inoue, Camillo Trapani |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 2002 | |
300 | |a 1 Online-Ressource (XX, 522 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and Its Applications |v 553 | |
500 | |a Algebras of bounded operators are familiar, either as C*-algebras or as von Neumann algebras. A first generalization is the notion of algebras of unbounded operators (O*-algebras), mostly developed by the Leipzig school and in Japan (for a review, we refer to the monographs of K. Schmüdgen [1990] and A. Inoue [1998]). This volume goes one step further, by considering systematically partial *-algebras of unbounded operators (partial O*-algebras) and the underlying algebraic structure, namely, partial *-algebras. It is the first textbook on this topic. The first part is devoted to partial O*-algebras, basic properties, examples, topologies on them. The climax is the generalization to this new framework of the celebrated modular theory of Tomita-Takesaki, one of the cornerstones for the applications to statistical physics. The second part focuses on abstract partial *-algebras and their representation theory, obtaining again generalizations of familiar theorems (Radon-Nikodym, Lebesgue) | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Operator theory | |
650 | 4 | |a Analysis | |
650 | 4 | |a Operator Theory | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Inoue, Atsushi |e Sonstige |4 oth | |
700 | 1 | |a Trapani, Camillo |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-017-0065-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859602 |
Datensatz im Suchindex
_version_ | 1804153100830769152 |
---|---|
any_adam_object | |
author | Antoine, Jean-Pierre |
author_facet | Antoine, Jean-Pierre |
author_role | aut |
author_sort | Antoine, Jean-Pierre |
author_variant | j p a jpa |
building | Verbundindex |
bvnumber | BV042424185 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)860233013 (DE-599)BVBBV042424185 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-017-0065-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02523nmm a2200469zcb4500</leader><controlfield tag="001">BV042424185</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401700658</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-017-0065-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048161768</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-6176-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-017-0065-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)860233013</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424185</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Antoine, Jean-Pierre</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Partial *-Algebras and Their Operator Realizations</subfield><subfield code="c">by Jean-Pierre Antoine, Atsushi Inoue, Camillo Trapani</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XX, 522 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">553</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Algebras of bounded operators are familiar, either as C*-algebras or as von Neumann algebras. A first generalization is the notion of algebras of unbounded operators (O*-algebras), mostly developed by the Leipzig school and in Japan (for a review, we refer to the monographs of K. Schmüdgen [1990] and A. Inoue [1998]). This volume goes one step further, by considering systematically partial *-algebras of unbounded operators (partial O*-algebras) and the underlying algebraic structure, namely, partial *-algebras. It is the first textbook on this topic. The first part is devoted to partial O*-algebras, basic properties, examples, topologies on them. The climax is the generalization to this new framework of the celebrated modular theory of Tomita-Takesaki, one of the cornerstones for the applications to statistical physics. The second part focuses on abstract partial *-algebras and their representation theory, obtaining again generalizations of familiar theorems (Radon-Nikodym, Lebesgue)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Inoue, Atsushi</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Trapani, Camillo</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-017-0065-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859602</subfield></datafield></record></collection> |
id | DE-604.BV042424185 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:15Z |
institution | BVB |
isbn | 9789401700658 9789048161768 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859602 |
oclc_num | 860233013 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XX, 522 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Mathematics and Its Applications |
spelling | Antoine, Jean-Pierre Verfasser aut Partial *-Algebras and Their Operator Realizations by Jean-Pierre Antoine, Atsushi Inoue, Camillo Trapani Dordrecht Springer Netherlands 2002 1 Online-Ressource (XX, 522 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 553 Algebras of bounded operators are familiar, either as C*-algebras or as von Neumann algebras. A first generalization is the notion of algebras of unbounded operators (O*-algebras), mostly developed by the Leipzig school and in Japan (for a review, we refer to the monographs of K. Schmüdgen [1990] and A. Inoue [1998]). This volume goes one step further, by considering systematically partial *-algebras of unbounded operators (partial O*-algebras) and the underlying algebraic structure, namely, partial *-algebras. It is the first textbook on this topic. The first part is devoted to partial O*-algebras, basic properties, examples, topologies on them. The climax is the generalization to this new framework of the celebrated modular theory of Tomita-Takesaki, one of the cornerstones for the applications to statistical physics. The second part focuses on abstract partial *-algebras and their representation theory, obtaining again generalizations of familiar theorems (Radon-Nikodym, Lebesgue) Mathematics Global analysis (Mathematics) Operator theory Analysis Operator Theory Mathematics, general Mathematik Inoue, Atsushi Sonstige oth Trapani, Camillo Sonstige oth https://doi.org/10.1007/978-94-017-0065-8 Verlag Volltext |
spellingShingle | Antoine, Jean-Pierre Partial *-Algebras and Their Operator Realizations Mathematics Global analysis (Mathematics) Operator theory Analysis Operator Theory Mathematics, general Mathematik |
title | Partial *-Algebras and Their Operator Realizations |
title_auth | Partial *-Algebras and Their Operator Realizations |
title_exact_search | Partial *-Algebras and Their Operator Realizations |
title_full | Partial *-Algebras and Their Operator Realizations by Jean-Pierre Antoine, Atsushi Inoue, Camillo Trapani |
title_fullStr | Partial *-Algebras and Their Operator Realizations by Jean-Pierre Antoine, Atsushi Inoue, Camillo Trapani |
title_full_unstemmed | Partial *-Algebras and Their Operator Realizations by Jean-Pierre Antoine, Atsushi Inoue, Camillo Trapani |
title_short | Partial *-Algebras and Their Operator Realizations |
title_sort | partial algebras and their operator realizations |
topic | Mathematics Global analysis (Mathematics) Operator theory Analysis Operator Theory Mathematics, general Mathematik |
topic_facet | Mathematics Global analysis (Mathematics) Operator theory Analysis Operator Theory Mathematics, general Mathematik |
url | https://doi.org/10.1007/978-94-017-0065-8 |
work_keys_str_mv | AT antoinejeanpierre partialalgebrasandtheiroperatorrealizations AT inoueatsushi partialalgebrasandtheiroperatorrealizations AT trapanicamillo partialalgebrasandtheiroperatorrealizations |