An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
2002
|
Ausgabe: | Second Edition |
Schriftenreihe: | Applied Logic Series
27 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In case you are considering to adopt this book for courses with over 50 students, please contact ties.nijssen@springer.com for more information. This introduction to mathematical logic starts with propositional calculus and first-order logic. Topics covered include syntax, semantics, soundness, completeness, independence, normal forms, vertical paths through negation normal formulas, compactness, Smullyan's Unifying Principle, natural deduction, cut-elimination, semantic tableaux, Skolemization, Herbrand's Theorem, unification, duality, interpolation, and definability. The last three chapters of the book provide an introduction to type theory (higher-order logic). It is shown how various mathematical concepts can be formalized in this very expressive formal language. This expressive notation facilitates proofs of the classical incompleteness and undecidability theorems which are very elegant and easy to understand. The discussion of semantics makes clear the important distinction between standard and nonstandard models which is so important in understanding puzzling phenomena such as the incompleteness theorems and Skolem's Paradox about countable models of set theory. Some of the numerous exercises require giving formal proofs. A computer program called ETPS which is available from the web facilitates doing and checking such exercises. Audience: This volume will be of interest to mathematicians, computer scientists, and philosophers in universities, as well as to computer scientists in industry who wish to use higher-order logic for hardware and software specification and verification |
Beschreibung: | 1 Online-Ressource (XVIII, 390 p) |
ISBN: | 9789401599344 9789048160792 |
ISSN: | 1386-2790 |
DOI: | 10.1007/978-94-015-9934-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042424175 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2002 |||| o||u| ||||||eng d | ||
020 | |a 9789401599344 |c Online |9 978-94-015-9934-4 | ||
020 | |a 9789048160792 |c Print |9 978-90-481-6079-2 | ||
024 | 7 | |a 10.1007/978-94-015-9934-4 |2 doi | |
035 | |a (OCoLC)864010568 | ||
035 | |a (DE-599)BVBBV042424175 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 511.3 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Andrews, Peter B. |e Verfasser |4 aut | |
245 | 1 | 0 | |a An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof |c by Peter B. Andrews |
250 | |a Second Edition | ||
264 | 1 | |a Dordrecht |b Springer Netherlands |c 2002 | |
300 | |a 1 Online-Ressource (XVIII, 390 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Applied Logic Series |v 27 |x 1386-2790 | |
500 | |a In case you are considering to adopt this book for courses with over 50 students, please contact ties.nijssen@springer.com for more information. This introduction to mathematical logic starts with propositional calculus and first-order logic. Topics covered include syntax, semantics, soundness, completeness, independence, normal forms, vertical paths through negation normal formulas, compactness, Smullyan's Unifying Principle, natural deduction, cut-elimination, semantic tableaux, Skolemization, Herbrand's Theorem, unification, duality, interpolation, and definability. The last three chapters of the book provide an introduction to type theory (higher-order logic). It is shown how various mathematical concepts can be formalized in this very expressive formal language. This expressive notation facilitates proofs of the classical incompleteness and undecidability theorems which are very elegant and easy to understand. The discussion of semantics makes clear the important distinction between standard and nonstandard models which is so important in understanding puzzling phenomena such as the incompleteness theorems and Skolem's Paradox about countable models of set theory. Some of the numerous exercises require giving formal proofs. A computer program called ETPS which is available from the web facilitates doing and checking such exercises. Audience: This volume will be of interest to mathematicians, computer scientists, and philosophers in universities, as well as to computer scientists in industry who wish to use higher-order logic for hardware and software specification and verification | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Logic | |
650 | 4 | |a Electronic data processing | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Logic, Symbolic and mathematical | |
650 | 4 | |a Computational linguistics | |
650 | 4 | |a Mathematical Logic and Foundations | |
650 | 4 | |a Computing Methodologies | |
650 | 4 | |a Artificial Intelligence (incl. Robotics) | |
650 | 4 | |a Computational Linguistics | |
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Künstliche Intelligenz | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Mathematische Logik |0 (DE-588)4037951-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Beweisbarkeit |0 (DE-588)7578966-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Typentheorie |0 (DE-588)4121795-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mathematische Logik |0 (DE-588)4037951-6 |D s |
689 | 0 | 1 | |a Beweisbarkeit |0 (DE-588)7578966-8 |D s |
689 | 0 | 2 | |a Typentheorie |0 (DE-588)4121795-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-015-9934-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859592 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153100804554752 |
---|---|
any_adam_object | |
author | Andrews, Peter B. |
author_facet | Andrews, Peter B. |
author_role | aut |
author_sort | Andrews, Peter B. |
author_variant | p b a pb pba |
building | Verbundindex |
bvnumber | BV042424175 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)864010568 (DE-599)BVBBV042424175 |
dewey-full | 511.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3 |
dewey-search | 511.3 |
dewey-sort | 3511.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-015-9934-4 |
edition | Second Edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03831nmm a2200625zcb4500</leader><controlfield tag="001">BV042424175</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401599344</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-015-9934-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048160792</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-6079-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-015-9934-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864010568</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424175</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Andrews, Peter B.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof</subfield><subfield code="c">by Peter B. Andrews</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVIII, 390 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Applied Logic Series</subfield><subfield code="v">27</subfield><subfield code="x">1386-2790</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In case you are considering to adopt this book for courses with over 50 students, please contact ties.nijssen@springer.com for more information. This introduction to mathematical logic starts with propositional calculus and first-order logic. Topics covered include syntax, semantics, soundness, completeness, independence, normal forms, vertical paths through negation normal formulas, compactness, Smullyan's Unifying Principle, natural deduction, cut-elimination, semantic tableaux, Skolemization, Herbrand's Theorem, unification, duality, interpolation, and definability. The last three chapters of the book provide an introduction to type theory (higher-order logic). It is shown how various mathematical concepts can be formalized in this very expressive formal language. This expressive notation facilitates proofs of the classical incompleteness and undecidability theorems which are very elegant and easy to understand. The discussion of semantics makes clear the important distinction between standard and nonstandard models which is so important in understanding puzzling phenomena such as the incompleteness theorems and Skolem's Paradox about countable models of set theory. Some of the numerous exercises require giving formal proofs. A computer program called ETPS which is available from the web facilitates doing and checking such exercises. Audience: This volume will be of interest to mathematicians, computer scientists, and philosophers in universities, as well as to computer scientists in industry who wish to use higher-order logic for hardware and software specification and verification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational linguistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Logic and Foundations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computing Methodologies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence (incl. Robotics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Linguistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Künstliche Intelligenz</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Beweisbarkeit</subfield><subfield code="0">(DE-588)7578966-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Typentheorie</subfield><subfield code="0">(DE-588)4121795-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Beweisbarkeit</subfield><subfield code="0">(DE-588)7578966-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Typentheorie</subfield><subfield code="0">(DE-588)4121795-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-015-9934-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859592</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042424175 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:15Z |
institution | BVB |
isbn | 9789401599344 9789048160792 |
issn | 1386-2790 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859592 |
oclc_num | 864010568 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVIII, 390 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Applied Logic Series |
spelling | Andrews, Peter B. Verfasser aut An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof by Peter B. Andrews Second Edition Dordrecht Springer Netherlands 2002 1 Online-Ressource (XVIII, 390 p) txt rdacontent c rdamedia cr rdacarrier Applied Logic Series 27 1386-2790 In case you are considering to adopt this book for courses with over 50 students, please contact ties.nijssen@springer.com for more information. This introduction to mathematical logic starts with propositional calculus and first-order logic. Topics covered include syntax, semantics, soundness, completeness, independence, normal forms, vertical paths through negation normal formulas, compactness, Smullyan's Unifying Principle, natural deduction, cut-elimination, semantic tableaux, Skolemization, Herbrand's Theorem, unification, duality, interpolation, and definability. The last three chapters of the book provide an introduction to type theory (higher-order logic). It is shown how various mathematical concepts can be formalized in this very expressive formal language. This expressive notation facilitates proofs of the classical incompleteness and undecidability theorems which are very elegant and easy to understand. The discussion of semantics makes clear the important distinction between standard and nonstandard models which is so important in understanding puzzling phenomena such as the incompleteness theorems and Skolem's Paradox about countable models of set theory. Some of the numerous exercises require giving formal proofs. A computer program called ETPS which is available from the web facilitates doing and checking such exercises. Audience: This volume will be of interest to mathematicians, computer scientists, and philosophers in universities, as well as to computer scientists in industry who wish to use higher-order logic for hardware and software specification and verification Mathematics Logic Electronic data processing Artificial intelligence Logic, Symbolic and mathematical Computational linguistics Mathematical Logic and Foundations Computing Methodologies Artificial Intelligence (incl. Robotics) Computational Linguistics Datenverarbeitung Künstliche Intelligenz Mathematik Mathematische Logik (DE-588)4037951-6 gnd rswk-swf Beweisbarkeit (DE-588)7578966-8 gnd rswk-swf Typentheorie (DE-588)4121795-0 gnd rswk-swf Mathematische Logik (DE-588)4037951-6 s Beweisbarkeit (DE-588)7578966-8 s Typentheorie (DE-588)4121795-0 s 1\p DE-604 https://doi.org/10.1007/978-94-015-9934-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Andrews, Peter B. An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof Mathematics Logic Electronic data processing Artificial intelligence Logic, Symbolic and mathematical Computational linguistics Mathematical Logic and Foundations Computing Methodologies Artificial Intelligence (incl. Robotics) Computational Linguistics Datenverarbeitung Künstliche Intelligenz Mathematik Mathematische Logik (DE-588)4037951-6 gnd Beweisbarkeit (DE-588)7578966-8 gnd Typentheorie (DE-588)4121795-0 gnd |
subject_GND | (DE-588)4037951-6 (DE-588)7578966-8 (DE-588)4121795-0 |
title | An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof |
title_auth | An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof |
title_exact_search | An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof |
title_full | An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof by Peter B. Andrews |
title_fullStr | An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof by Peter B. Andrews |
title_full_unstemmed | An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof by Peter B. Andrews |
title_short | An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof |
title_sort | an introduction to mathematical logic and type theory to truth through proof |
topic | Mathematics Logic Electronic data processing Artificial intelligence Logic, Symbolic and mathematical Computational linguistics Mathematical Logic and Foundations Computing Methodologies Artificial Intelligence (incl. Robotics) Computational Linguistics Datenverarbeitung Künstliche Intelligenz Mathematik Mathematische Logik (DE-588)4037951-6 gnd Beweisbarkeit (DE-588)7578966-8 gnd Typentheorie (DE-588)4121795-0 gnd |
topic_facet | Mathematics Logic Electronic data processing Artificial intelligence Logic, Symbolic and mathematical Computational linguistics Mathematical Logic and Foundations Computing Methodologies Artificial Intelligence (incl. Robotics) Computational Linguistics Datenverarbeitung Künstliche Intelligenz Mathematik Mathematische Logik Beweisbarkeit Typentheorie |
url | https://doi.org/10.1007/978-94-015-9934-4 |
work_keys_str_mv | AT andrewspeterb anintroductiontomathematicallogicandtypetheorytotruththroughproof |