Pairs of Compact Convex Sets: Fractional Arithmetic with Convex Sets
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
2002
|
Schriftenreihe: | Mathematics and Its Applications
548 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Pairs of compact convex sets arise in the quasidifferential calculus of V.F. Demyanov and A.M. Rubinov as sub- and superdifferentials of quasidifferen tiable functions (see [26]) and in the formulas for the numerical evaluation of the Aumann-Integral which were recently introduced in a series of papers by R. Baier and F. Lempio (see [4], [5], [10] and [9]) and R. Baier and E.M. Farkhi [6], [7], [8]. In the field of combinatorial convexity G. Ewald et al. [36] used an interesting construction called virtual polytope, which can also be represented as a pair of polytopes for the calculation of the combinatorial Picard group of a fan. Since in all mentioned cases the pairs of compact con vex sets are not uniquely determined, minimal representations are of special to the existence of minimal pairs of compact importance. A problem related convex sets is the existence of reduced pairs of convex bodies, which has been studied by Chr. Bauer (see [14]) |
Beschreibung: | 1 Online-Ressource (XII, 295 p) |
ISBN: | 9789401599207 9789048161492 |
DOI: | 10.1007/978-94-015-9920-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042424173 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2002 |||| o||u| ||||||eng d | ||
020 | |a 9789401599207 |c Online |9 978-94-015-9920-7 | ||
020 | |a 9789048161492 |c Print |9 978-90-481-6149-2 | ||
024 | 7 | |a 10.1007/978-94-015-9920-7 |2 doi | |
035 | |a (OCoLC)1184490479 | ||
035 | |a (DE-599)BVBBV042424173 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516.1 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Pallaschke, Diethard |e Verfasser |4 aut | |
245 | 1 | 0 | |a Pairs of Compact Convex Sets |b Fractional Arithmetic with Convex Sets |c by Diethard Pallaschke, Ryszard Urbański |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 2002 | |
300 | |a 1 Online-Ressource (XII, 295 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and Its Applications |v 548 | |
500 | |a Pairs of compact convex sets arise in the quasidifferential calculus of V.F. Demyanov and A.M. Rubinov as sub- and superdifferentials of quasidifferen tiable functions (see [26]) and in the formulas for the numerical evaluation of the Aumann-Integral which were recently introduced in a series of papers by R. Baier and F. Lempio (see [4], [5], [10] and [9]) and R. Baier and E.M. Farkhi [6], [7], [8]. In the field of combinatorial convexity G. Ewald et al. [36] used an interesting construction called virtual polytope, which can also be represented as a pair of polytopes for the calculation of the combinatorial Picard group of a fan. Since in all mentioned cases the pairs of compact con vex sets are not uniquely determined, minimal representations are of special to the existence of minimal pairs of compact importance. A problem related convex sets is the existence of reduced pairs of convex bodies, which has been studied by Chr. Bauer (see [14]) | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Discrete groups | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Convex and Discrete Geometry | |
650 | 4 | |a Optimization | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Kompakte konvexe Menge |0 (DE-588)4164844-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kompakte konvexe Menge |0 (DE-588)4164844-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Urbański, Ryszard |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-015-9920-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859590 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153100811894784 |
---|---|
any_adam_object | |
author | Pallaschke, Diethard |
author_facet | Pallaschke, Diethard |
author_role | aut |
author_sort | Pallaschke, Diethard |
author_variant | d p dp |
building | Verbundindex |
bvnumber | BV042424173 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184490479 (DE-599)BVBBV042424173 |
dewey-full | 516.1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.1 |
dewey-search | 516.1 |
dewey-sort | 3516.1 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-015-9920-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02673nmm a2200493zcb4500</leader><controlfield tag="001">BV042424173</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401599207</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-015-9920-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048161492</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-6149-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-015-9920-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184490479</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424173</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pallaschke, Diethard</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pairs of Compact Convex Sets</subfield><subfield code="b">Fractional Arithmetic with Convex Sets</subfield><subfield code="c">by Diethard Pallaschke, Ryszard Urbański</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 295 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">548</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Pairs of compact convex sets arise in the quasidifferential calculus of V.F. Demyanov and A.M. Rubinov as sub- and superdifferentials of quasidifferen tiable functions (see [26]) and in the formulas for the numerical evaluation of the Aumann-Integral which were recently introduced in a series of papers by R. Baier and F. Lempio (see [4], [5], [10] and [9]) and R. Baier and E.M. Farkhi [6], [7], [8]. In the field of combinatorial convexity G. Ewald et al. [36] used an interesting construction called virtual polytope, which can also be represented as a pair of polytopes for the calculation of the combinatorial Picard group of a fan. Since in all mentioned cases the pairs of compact con vex sets are not uniquely determined, minimal representations are of special to the existence of minimal pairs of compact importance. A problem related convex sets is the existence of reduced pairs of convex bodies, which has been studied by Chr. Bauer (see [14])</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex and Discrete Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kompakte konvexe Menge</subfield><subfield code="0">(DE-588)4164844-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kompakte konvexe Menge</subfield><subfield code="0">(DE-588)4164844-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Urbański, Ryszard</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-015-9920-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859590</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042424173 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:15Z |
institution | BVB |
isbn | 9789401599207 9789048161492 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859590 |
oclc_num | 1184490479 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 295 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Mathematics and Its Applications |
spelling | Pallaschke, Diethard Verfasser aut Pairs of Compact Convex Sets Fractional Arithmetic with Convex Sets by Diethard Pallaschke, Ryszard Urbański Dordrecht Springer Netherlands 2002 1 Online-Ressource (XII, 295 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 548 Pairs of compact convex sets arise in the quasidifferential calculus of V.F. Demyanov and A.M. Rubinov as sub- and superdifferentials of quasidifferen tiable functions (see [26]) and in the formulas for the numerical evaluation of the Aumann-Integral which were recently introduced in a series of papers by R. Baier and F. Lempio (see [4], [5], [10] and [9]) and R. Baier and E.M. Farkhi [6], [7], [8]. In the field of combinatorial convexity G. Ewald et al. [36] used an interesting construction called virtual polytope, which can also be represented as a pair of polytopes for the calculation of the combinatorial Picard group of a fan. Since in all mentioned cases the pairs of compact con vex sets are not uniquely determined, minimal representations are of special to the existence of minimal pairs of compact importance. A problem related convex sets is the existence of reduced pairs of convex bodies, which has been studied by Chr. Bauer (see [14]) Mathematics Discrete groups Mathematical optimization Convex and Discrete Geometry Optimization Mathematik Kompakte konvexe Menge (DE-588)4164844-4 gnd rswk-swf Kompakte konvexe Menge (DE-588)4164844-4 s 1\p DE-604 Urbański, Ryszard Sonstige oth https://doi.org/10.1007/978-94-015-9920-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Pallaschke, Diethard Pairs of Compact Convex Sets Fractional Arithmetic with Convex Sets Mathematics Discrete groups Mathematical optimization Convex and Discrete Geometry Optimization Mathematik Kompakte konvexe Menge (DE-588)4164844-4 gnd |
subject_GND | (DE-588)4164844-4 |
title | Pairs of Compact Convex Sets Fractional Arithmetic with Convex Sets |
title_auth | Pairs of Compact Convex Sets Fractional Arithmetic with Convex Sets |
title_exact_search | Pairs of Compact Convex Sets Fractional Arithmetic with Convex Sets |
title_full | Pairs of Compact Convex Sets Fractional Arithmetic with Convex Sets by Diethard Pallaschke, Ryszard Urbański |
title_fullStr | Pairs of Compact Convex Sets Fractional Arithmetic with Convex Sets by Diethard Pallaschke, Ryszard Urbański |
title_full_unstemmed | Pairs of Compact Convex Sets Fractional Arithmetic with Convex Sets by Diethard Pallaschke, Ryszard Urbański |
title_short | Pairs of Compact Convex Sets |
title_sort | pairs of compact convex sets fractional arithmetic with convex sets |
title_sub | Fractional Arithmetic with Convex Sets |
topic | Mathematics Discrete groups Mathematical optimization Convex and Discrete Geometry Optimization Mathematik Kompakte konvexe Menge (DE-588)4164844-4 gnd |
topic_facet | Mathematics Discrete groups Mathematical optimization Convex and Discrete Geometry Optimization Mathematik Kompakte konvexe Menge |
url | https://doi.org/10.1007/978-94-015-9920-7 |
work_keys_str_mv | AT pallaschkediethard pairsofcompactconvexsetsfractionalarithmeticwithconvexsets AT urbanskiryszard pairsofcompactconvexsetsfractionalarithmeticwithconvexsets |