Mathematical Physics of Quantum Wires and Devices: From Spectral Resonances to Anderson Localization
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
2000
|
Schriftenreihe: | Mathematics and Its Applications
506 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This monograph on quantum wires and quantum devices is a companion volume to the author's Quantum Chaos and Mesoscopic Systems (Kluwer, Dordrecht, 1997). The goal of this work is to present to the reader the mathematical physics which has arisen in the study of these systems. The course which I have taken in this volume is to juxtapose the current work on the mathematical physics of quantum devices and the details behind the work so that the reader can gain an understanding of the physics, and where possible the open problems which remain in the development of a complete mathematical description of the devices. I have attempted to include sufficient background and references so that the reader can understand the limitations of the current methods and have direction to the original material for the research on the physics of these devices. As in the earlier volume, the monograph is a panoramic survey of the mathematical physics of quantum wires and devices. Detailed proofs are kept to a minimum, with outlines of the principal steps and references to the primary sources as required. The survey is very broad to give a general development to a variety of problems in quantum devices, not a specialty volume |
Beschreibung: | 1 Online-Ressource (XV, 302 p) |
ISBN: | 9789401596268 9789048154463 |
DOI: | 10.1007/978-94-015-9626-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042424158 | ||
003 | DE-604 | ||
005 | 20171221 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2000 |||| o||u| ||||||eng d | ||
020 | |a 9789401596268 |c Online |9 978-94-015-9626-8 | ||
020 | |a 9789048154463 |c Print |9 978-90-481-5446-3 | ||
024 | 7 | |a 10.1007/978-94-015-9626-8 |2 doi | |
035 | |a (OCoLC)905427438 | ||
035 | |a (DE-599)BVBBV042424158 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 530.1 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Hurt, Norman E. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Mathematical Physics of Quantum Wires and Devices |b From Spectral Resonances to Anderson Localization |c by Norman E. Hurt |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 2000 | |
300 | |a 1 Online-Ressource (XV, 302 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematics and Its Applications |v 506 | |
500 | |a This monograph on quantum wires and quantum devices is a companion volume to the author's Quantum Chaos and Mesoscopic Systems (Kluwer, Dordrecht, 1997). The goal of this work is to present to the reader the mathematical physics which has arisen in the study of these systems. The course which I have taken in this volume is to juxtapose the current work on the mathematical physics of quantum devices and the details behind the work so that the reader can gain an understanding of the physics, and where possible the open problems which remain in the development of a complete mathematical description of the devices. I have attempted to include sufficient background and references so that the reader can understand the limitations of the current methods and have direction to the original material for the research on the physics of these devices. As in the earlier volume, the monograph is a panoramic survey of the mathematical physics of quantum wires and devices. Detailed proofs are kept to a minimum, with outlines of the principal steps and references to the primary sources as required. The survey is very broad to give a general development to a variety of problems in quantum devices, not a specialty volume | ||
650 | 4 | |a Physics | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Number theory | |
650 | 4 | |a Optical materials | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Optical and Electronic Materials | |
650 | 4 | |a Number Theory | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Quantendraht |0 (DE-588)4263397-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantendraht |0 (DE-588)4263397-7 |D s |
689 | 0 | 1 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
830 | 0 | |a Mathematics and Its Applications |v 506 |w (DE-604)BV008163334 |9 506 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-015-9626-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859575 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153100769951744 |
---|---|
any_adam_object | |
author | Hurt, Norman E. |
author_facet | Hurt, Norman E. |
author_role | aut |
author_sort | Hurt, Norman E. |
author_variant | n e h ne neh |
building | Verbundindex |
bvnumber | BV042424158 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)905427438 (DE-599)BVBBV042424158 |
dewey-full | 530.1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1 |
dewey-search | 530.1 |
dewey-sort | 3530.1 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
doi_str_mv | 10.1007/978-94-015-9626-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03277nmm a2200577zcb4500</leader><controlfield tag="001">BV042424158</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171221 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401596268</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-015-9626-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048154463</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-5446-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-015-9626-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)905427438</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424158</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hurt, Norman E.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical Physics of Quantum Wires and Devices</subfield><subfield code="b">From Spectral Resonances to Anderson Localization</subfield><subfield code="c">by Norman E. Hurt</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 302 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">506</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This monograph on quantum wires and quantum devices is a companion volume to the author's Quantum Chaos and Mesoscopic Systems (Kluwer, Dordrecht, 1997). The goal of this work is to present to the reader the mathematical physics which has arisen in the study of these systems. The course which I have taken in this volume is to juxtapose the current work on the mathematical physics of quantum devices and the details behind the work so that the reader can gain an understanding of the physics, and where possible the open problems which remain in the development of a complete mathematical description of the devices. I have attempted to include sufficient background and references so that the reader can understand the limitations of the current methods and have direction to the original material for the research on the physics of these devices. As in the earlier volume, the monograph is a panoramic survey of the mathematical physics of quantum wires and devices. Detailed proofs are kept to a minimum, with outlines of the principal steps and references to the primary sources as required. The survey is very broad to give a general development to a variety of problems in quantum devices, not a specialty volume</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical and Electronic Materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantendraht</subfield><subfield code="0">(DE-588)4263397-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantendraht</subfield><subfield code="0">(DE-588)4263397-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">506</subfield><subfield code="w">(DE-604)BV008163334</subfield><subfield code="9">506</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-015-9626-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859575</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042424158 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:15Z |
institution | BVB |
isbn | 9789401596268 9789048154463 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859575 |
oclc_num | 905427438 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XV, 302 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer Netherlands |
record_format | marc |
series | Mathematics and Its Applications |
series2 | Mathematics and Its Applications |
spelling | Hurt, Norman E. Verfasser aut Mathematical Physics of Quantum Wires and Devices From Spectral Resonances to Anderson Localization by Norman E. Hurt Dordrecht Springer Netherlands 2000 1 Online-Ressource (XV, 302 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 506 This monograph on quantum wires and quantum devices is a companion volume to the author's Quantum Chaos and Mesoscopic Systems (Kluwer, Dordrecht, 1997). The goal of this work is to present to the reader the mathematical physics which has arisen in the study of these systems. The course which I have taken in this volume is to juxtapose the current work on the mathematical physics of quantum devices and the details behind the work so that the reader can gain an understanding of the physics, and where possible the open problems which remain in the development of a complete mathematical description of the devices. I have attempted to include sufficient background and references so that the reader can understand the limitations of the current methods and have direction to the original material for the research on the physics of these devices. As in the earlier volume, the monograph is a panoramic survey of the mathematical physics of quantum wires and devices. Detailed proofs are kept to a minimum, with outlines of the principal steps and references to the primary sources as required. The survey is very broad to give a general development to a variety of problems in quantum devices, not a specialty volume Physics Functional analysis Mathematics Number theory Optical materials Theoretical, Mathematical and Computational Physics Applications of Mathematics Functional Analysis Optical and Electronic Materials Number Theory Mathematik Quantendraht (DE-588)4263397-7 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Quantendraht (DE-588)4263397-7 s Mathematische Physik (DE-588)4037952-8 s 1\p DE-604 Mathematics and Its Applications 506 (DE-604)BV008163334 506 https://doi.org/10.1007/978-94-015-9626-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Hurt, Norman E. Mathematical Physics of Quantum Wires and Devices From Spectral Resonances to Anderson Localization Mathematics and Its Applications Physics Functional analysis Mathematics Number theory Optical materials Theoretical, Mathematical and Computational Physics Applications of Mathematics Functional Analysis Optical and Electronic Materials Number Theory Mathematik Quantendraht (DE-588)4263397-7 gnd Mathematische Physik (DE-588)4037952-8 gnd |
subject_GND | (DE-588)4263397-7 (DE-588)4037952-8 |
title | Mathematical Physics of Quantum Wires and Devices From Spectral Resonances to Anderson Localization |
title_auth | Mathematical Physics of Quantum Wires and Devices From Spectral Resonances to Anderson Localization |
title_exact_search | Mathematical Physics of Quantum Wires and Devices From Spectral Resonances to Anderson Localization |
title_full | Mathematical Physics of Quantum Wires and Devices From Spectral Resonances to Anderson Localization by Norman E. Hurt |
title_fullStr | Mathematical Physics of Quantum Wires and Devices From Spectral Resonances to Anderson Localization by Norman E. Hurt |
title_full_unstemmed | Mathematical Physics of Quantum Wires and Devices From Spectral Resonances to Anderson Localization by Norman E. Hurt |
title_short | Mathematical Physics of Quantum Wires and Devices |
title_sort | mathematical physics of quantum wires and devices from spectral resonances to anderson localization |
title_sub | From Spectral Resonances to Anderson Localization |
topic | Physics Functional analysis Mathematics Number theory Optical materials Theoretical, Mathematical and Computational Physics Applications of Mathematics Functional Analysis Optical and Electronic Materials Number Theory Mathematik Quantendraht (DE-588)4263397-7 gnd Mathematische Physik (DE-588)4037952-8 gnd |
topic_facet | Physics Functional analysis Mathematics Number theory Optical materials Theoretical, Mathematical and Computational Physics Applications of Mathematics Functional Analysis Optical and Electronic Materials Number Theory Mathematik Quantendraht Mathematische Physik |
url | https://doi.org/10.1007/978-94-015-9626-8 |
volume_link | (DE-604)BV008163334 |
work_keys_str_mv | AT hurtnormane mathematicalphysicsofquantumwiresanddevicesfromspectralresonancestoandersonlocalization |