Modern Projective Geometry:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
2000
|
Schriftenreihe: | Mathematics and Its Applications
521 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Projective geometry is a very classical part of mathematics and one might think that the subject is completely explored and that there is nothing new to be added. But it seems that there exists no book on projective geometry which provides a systematic treatment of morphisms. We intend to fill this gap. It is in this sense that the present monograph can be called modern. The reason why morphisms have not been studied much earlier is probably the fact that they are in general partial maps between the point sets G and G, noted ' 9 : G -- ~ G', i.e. maps 9 : D -4 G' whose domain Dom 9 := D is a subset of G. We give two simple examples of partial maps which ought to be morphisms. The first example is purely geometric. Let E, F be complementary subspaces of a projective geometry G. If x E G \ E, then g(x) := (E V x) n F (where E V x is the subspace generated by E U {x}) is a unique point of F, i.e. one obtains a map 9 : G \ E -4 F. As special case, if E = {z} is a singleton and F a hyperplane with z tf. F, then g: G \ {z} -4 F is the projection with center z of G onto F. |
Beschreibung: | 1 Online-Ressource (XVII, 363 p) |
ISBN: | 9789401595902 9789048155446 |
DOI: | 10.1007/978-94-015-9590-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042424154 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2000 |||| o||u| ||||||eng d | ||
020 | |a 9789401595902 |c Online |9 978-94-015-9590-2 | ||
020 | |a 9789048155446 |c Print |9 978-90-481-5544-6 | ||
024 | 7 | |a 10.1007/978-94-015-9590-2 |2 doi | |
035 | |a (OCoLC)1184492190 | ||
035 | |a (DE-599)BVBBV042424154 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Faure, Claude-Alain |e Verfasser |4 aut | |
245 | 1 | 0 | |a Modern Projective Geometry |c by Claude-Alain Faure, Alfred Frölicher |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 2000 | |
300 | |a 1 Online-Ressource (XVII, 363 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and Its Applications |v 521 | |
500 | |a Projective geometry is a very classical part of mathematics and one might think that the subject is completely explored and that there is nothing new to be added. But it seems that there exists no book on projective geometry which provides a systematic treatment of morphisms. We intend to fill this gap. It is in this sense that the present monograph can be called modern. The reason why morphisms have not been studied much earlier is probably the fact that they are in general partial maps between the point sets G and G, noted ' 9 : G -- ~ G', i.e. maps 9 : D -4 G' whose domain Dom 9 := D is a subset of G. We give two simple examples of partial maps which ought to be morphisms. The first example is purely geometric. Let E, F be complementary subspaces of a projective geometry G. If x E G \ E, then g(x) := (E V x) n F (where E V x is the subspace generated by E U {x}) is a unique point of F, i.e. one obtains a map 9 : G \ E -4 F. As special case, if E = {z} is a singleton and F a hyperplane with z tf. F, then g: G \ {z} -4 F is the projection with center z of G onto F. | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebra | |
650 | 4 | |a Matrix theory | |
650 | 4 | |a Combinatorics | |
650 | 4 | |a Geometry | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Linear and Multilinear Algebras, Matrix Theory | |
650 | 4 | |a Category Theory, Homological Algebra | |
650 | 4 | |a Quantum Physics | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Quantentheorie | |
650 | 0 | 7 | |a Projektive Geometrie |0 (DE-588)4047436-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Projektive Geometrie |0 (DE-588)4047436-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Frölicher, Alfred |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-015-9590-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859571 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153100777291776 |
---|---|
any_adam_object | |
author | Faure, Claude-Alain |
author_facet | Faure, Claude-Alain |
author_role | aut |
author_sort | Faure, Claude-Alain |
author_variant | c a f caf |
building | Verbundindex |
bvnumber | BV042424154 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184492190 (DE-599)BVBBV042424154 |
dewey-full | 516 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516 |
dewey-search | 516 |
dewey-sort | 3516 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-015-9590-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02917nmm a2200553zcb4500</leader><controlfield tag="001">BV042424154</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401595902</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-015-9590-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048155446</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-5544-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-015-9590-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184492190</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424154</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Faure, Claude-Alain</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modern Projective Geometry</subfield><subfield code="c">by Claude-Alain Faure, Alfred Frölicher</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVII, 363 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">521</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Projective geometry is a very classical part of mathematics and one might think that the subject is completely explored and that there is nothing new to be added. But it seems that there exists no book on projective geometry which provides a systematic treatment of morphisms. We intend to fill this gap. It is in this sense that the present monograph can be called modern. The reason why morphisms have not been studied much earlier is probably the fact that they are in general partial maps between the point sets G and G, noted ' 9 : G -- ~ G', i.e. maps 9 : D -4 G' whose domain Dom 9 := D is a subset of G. We give two simple examples of partial maps which ought to be morphisms. The first example is purely geometric. Let E, F be complementary subspaces of a projective geometry G. If x E G \ E, then g(x) := (E V x) n F (where E V x is the subspace generated by E U {x}) is a unique point of F, i.e. one obtains a map 9 : G \ E -4 F. As special case, if E = {z} is a singleton and F a hyperplane with z tf. F, then g: G \ {z} -4 F is the projection with center z of G onto F.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrix theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear and Multilinear Algebras, Matrix Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Category Theory, Homological Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Projektive Geometrie</subfield><subfield code="0">(DE-588)4047436-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Projektive Geometrie</subfield><subfield code="0">(DE-588)4047436-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Frölicher, Alfred</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-015-9590-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859571</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042424154 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:15Z |
institution | BVB |
isbn | 9789401595902 9789048155446 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859571 |
oclc_num | 1184492190 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVII, 363 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Mathematics and Its Applications |
spelling | Faure, Claude-Alain Verfasser aut Modern Projective Geometry by Claude-Alain Faure, Alfred Frölicher Dordrecht Springer Netherlands 2000 1 Online-Ressource (XVII, 363 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 521 Projective geometry is a very classical part of mathematics and one might think that the subject is completely explored and that there is nothing new to be added. But it seems that there exists no book on projective geometry which provides a systematic treatment of morphisms. We intend to fill this gap. It is in this sense that the present monograph can be called modern. The reason why morphisms have not been studied much earlier is probably the fact that they are in general partial maps between the point sets G and G, noted ' 9 : G -- ~ G', i.e. maps 9 : D -4 G' whose domain Dom 9 := D is a subset of G. We give two simple examples of partial maps which ought to be morphisms. The first example is purely geometric. Let E, F be complementary subspaces of a projective geometry G. If x E G \ E, then g(x) := (E V x) n F (where E V x is the subspace generated by E U {x}) is a unique point of F, i.e. one obtains a map 9 : G \ E -4 F. As special case, if E = {z} is a singleton and F a hyperplane with z tf. F, then g: G \ {z} -4 F is the projection with center z of G onto F. Mathematics Algebra Matrix theory Combinatorics Geometry Quantum theory Linear and Multilinear Algebras, Matrix Theory Category Theory, Homological Algebra Quantum Physics Mathematik Quantentheorie Projektive Geometrie (DE-588)4047436-7 gnd rswk-swf Projektive Geometrie (DE-588)4047436-7 s 1\p DE-604 Frölicher, Alfred Sonstige oth https://doi.org/10.1007/978-94-015-9590-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Faure, Claude-Alain Modern Projective Geometry Mathematics Algebra Matrix theory Combinatorics Geometry Quantum theory Linear and Multilinear Algebras, Matrix Theory Category Theory, Homological Algebra Quantum Physics Mathematik Quantentheorie Projektive Geometrie (DE-588)4047436-7 gnd |
subject_GND | (DE-588)4047436-7 |
title | Modern Projective Geometry |
title_auth | Modern Projective Geometry |
title_exact_search | Modern Projective Geometry |
title_full | Modern Projective Geometry by Claude-Alain Faure, Alfred Frölicher |
title_fullStr | Modern Projective Geometry by Claude-Alain Faure, Alfred Frölicher |
title_full_unstemmed | Modern Projective Geometry by Claude-Alain Faure, Alfred Frölicher |
title_short | Modern Projective Geometry |
title_sort | modern projective geometry |
topic | Mathematics Algebra Matrix theory Combinatorics Geometry Quantum theory Linear and Multilinear Algebras, Matrix Theory Category Theory, Homological Algebra Quantum Physics Mathematik Quantentheorie Projektive Geometrie (DE-588)4047436-7 gnd |
topic_facet | Mathematics Algebra Matrix theory Combinatorics Geometry Quantum theory Linear and Multilinear Algebras, Matrix Theory Category Theory, Homological Algebra Quantum Physics Mathematik Quantentheorie Projektive Geometrie |
url | https://doi.org/10.1007/978-94-015-9590-2 |
work_keys_str_mv | AT faureclaudealain modernprojectivegeometry AT frolicheralfred modernprojectivegeometry |