Non-Parametric Statistical Diagnosis: Problems and Methods
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
2000
|
Schriftenreihe: | Mathematics and Its Applications
509 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book has a distinct philosophy and it is appropriate to make it explicit at the outset. In our view almost all classic statistical inference is based upon the assumption (explicit or implicit) that there exists a fixed probabilistic mechanism of data generation. Unlike classic statistical inference, this book is devoted to the statistical analysis of data about complex objects with more than one probabilistic mechanism of data generation. We think that the exis tence of more than one data generation process (DGP) is the most important characteristic of com plex systems. When the hypothesis of statistical homogeneity holds true, Le., there exists only one mechanism of data generation, all statistical inference is based upon the fundamentallaws of large numbers. However, the situation is completely different when the probabilistic law of data generation can change (in time or in the phase space). In this case all data obtained must be 'sorted' in subsamples generated by different probabilistic mechanisms. Only after such classification we can make correct inferences about all DGPs. There exists yet another type of problem for complex systems. Here it is important to detect possible (but unpredictable) changes of DGPs on-line with data collection. Since the complex system can change the probabilistic mechanism of data generation, the correct statistical analysis of such data must begin with decisions about possible changes in DGPs |
Beschreibung: | 1 Online-Ressource (XV, 452 p) |
ISBN: | 9789401595308 9789048154654 |
DOI: | 10.1007/978-94-015-9530-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042424148 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2000 |||| o||u| ||||||eng d | ||
020 | |a 9789401595308 |c Online |9 978-94-015-9530-8 | ||
020 | |a 9789048154654 |c Print |9 978-90-481-5465-4 | ||
024 | 7 | |a 10.1007/978-94-015-9530-8 |2 doi | |
035 | |a (OCoLC)1184502235 | ||
035 | |a (DE-599)BVBBV042424148 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.5 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Brodsky, B. E. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Non-Parametric Statistical Diagnosis |b Problems and Methods |c by B. E. Brodsky, B. S. Darkhovsky |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 2000 | |
300 | |a 1 Online-Ressource (XV, 452 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and Its Applications |v 509 | |
500 | |a This book has a distinct philosophy and it is appropriate to make it explicit at the outset. In our view almost all classic statistical inference is based upon the assumption (explicit or implicit) that there exists a fixed probabilistic mechanism of data generation. Unlike classic statistical inference, this book is devoted to the statistical analysis of data about complex objects with more than one probabilistic mechanism of data generation. We think that the exis tence of more than one data generation process (DGP) is the most important characteristic of com plex systems. When the hypothesis of statistical homogeneity holds true, Le., there exists only one mechanism of data generation, all statistical inference is based upon the fundamentallaws of large numbers. However, the situation is completely different when the probabilistic law of data generation can change (in time or in the phase space). In this case all data obtained must be 'sorted' in subsamples generated by different probabilistic mechanisms. Only after such classification we can make correct inferences about all DGPs. There exists yet another type of problem for complex systems. Here it is important to detect possible (but unpredictable) changes of DGPs on-line with data collection. Since the complex system can change the probabilistic mechanism of data generation, the correct statistical analysis of such data must begin with decisions about possible changes in DGPs | ||
650 | 4 | |a Statistics | |
650 | 4 | |a Family medicine | |
650 | 4 | |a Systems theory | |
650 | 4 | |a Econometrics | |
650 | 4 | |a Statistics, general | |
650 | 4 | |a Systems Theory, Control | |
650 | 4 | |a General Practice / Family Medicine | |
650 | 4 | |a Mathematical and Computational Biology | |
650 | 4 | |a Statistik | |
650 | 0 | 7 | |a Nichtparametrischer Test |0 (DE-588)4075372-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Change-point-Problem |0 (DE-588)4598971-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtparametrische Statistik |0 (DE-588)4226777-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtparametrischer Test |0 (DE-588)4075372-4 |D s |
689 | 0 | 1 | |a Change-point-Problem |0 (DE-588)4598971-0 |D s |
689 | 0 | 2 | |a Nichtparametrische Statistik |0 (DE-588)4226777-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Darkhovsky, B. S. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-015-9530-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859565 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153100758417408 |
---|---|
any_adam_object | |
author | Brodsky, B. E. |
author_facet | Brodsky, B. E. |
author_role | aut |
author_sort | Brodsky, B. E. |
author_variant | b e b be beb |
building | Verbundindex |
bvnumber | BV042424148 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184502235 (DE-599)BVBBV042424148 |
dewey-full | 519.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5 |
dewey-search | 519.5 |
dewey-sort | 3519.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-015-9530-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03550nmm a2200577zcb4500</leader><controlfield tag="001">BV042424148</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401595308</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-015-9530-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048154654</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-5465-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-015-9530-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184502235</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424148</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brodsky, B. E.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-Parametric Statistical Diagnosis</subfield><subfield code="b">Problems and Methods</subfield><subfield code="c">by B. E. Brodsky, B. S. Darkhovsky</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 452 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">509</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book has a distinct philosophy and it is appropriate to make it explicit at the outset. In our view almost all classic statistical inference is based upon the assumption (explicit or implicit) that there exists a fixed probabilistic mechanism of data generation. Unlike classic statistical inference, this book is devoted to the statistical analysis of data about complex objects with more than one probabilistic mechanism of data generation. We think that the exis tence of more than one data generation process (DGP) is the most important characteristic of com plex systems. When the hypothesis of statistical homogeneity holds true, Le., there exists only one mechanism of data generation, all statistical inference is based upon the fundamentallaws of large numbers. However, the situation is completely different when the probabilistic law of data generation can change (in time or in the phase space). In this case all data obtained must be 'sorted' in subsamples generated by different probabilistic mechanisms. Only after such classification we can make correct inferences about all DGPs. There exists yet another type of problem for complex systems. Here it is important to detect possible (but unpredictable) changes of DGPs on-line with data collection. Since the complex system can change the probabilistic mechanism of data generation, the correct statistical analysis of such data must begin with decisions about possible changes in DGPs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Family medicine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Econometrics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems Theory, Control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">General Practice / Family Medicine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical and Computational Biology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtparametrischer Test</subfield><subfield code="0">(DE-588)4075372-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Change-point-Problem</subfield><subfield code="0">(DE-588)4598971-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtparametrische Statistik</subfield><subfield code="0">(DE-588)4226777-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtparametrischer Test</subfield><subfield code="0">(DE-588)4075372-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Change-point-Problem</subfield><subfield code="0">(DE-588)4598971-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Nichtparametrische Statistik</subfield><subfield code="0">(DE-588)4226777-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Darkhovsky, B. S.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-015-9530-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859565</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042424148 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:15Z |
institution | BVB |
isbn | 9789401595308 9789048154654 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859565 |
oclc_num | 1184502235 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XV, 452 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Mathematics and Its Applications |
spelling | Brodsky, B. E. Verfasser aut Non-Parametric Statistical Diagnosis Problems and Methods by B. E. Brodsky, B. S. Darkhovsky Dordrecht Springer Netherlands 2000 1 Online-Ressource (XV, 452 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 509 This book has a distinct philosophy and it is appropriate to make it explicit at the outset. In our view almost all classic statistical inference is based upon the assumption (explicit or implicit) that there exists a fixed probabilistic mechanism of data generation. Unlike classic statistical inference, this book is devoted to the statistical analysis of data about complex objects with more than one probabilistic mechanism of data generation. We think that the exis tence of more than one data generation process (DGP) is the most important characteristic of com plex systems. When the hypothesis of statistical homogeneity holds true, Le., there exists only one mechanism of data generation, all statistical inference is based upon the fundamentallaws of large numbers. However, the situation is completely different when the probabilistic law of data generation can change (in time or in the phase space). In this case all data obtained must be 'sorted' in subsamples generated by different probabilistic mechanisms. Only after such classification we can make correct inferences about all DGPs. There exists yet another type of problem for complex systems. Here it is important to detect possible (but unpredictable) changes of DGPs on-line with data collection. Since the complex system can change the probabilistic mechanism of data generation, the correct statistical analysis of such data must begin with decisions about possible changes in DGPs Statistics Family medicine Systems theory Econometrics Statistics, general Systems Theory, Control General Practice / Family Medicine Mathematical and Computational Biology Statistik Nichtparametrischer Test (DE-588)4075372-4 gnd rswk-swf Change-point-Problem (DE-588)4598971-0 gnd rswk-swf Nichtparametrische Statistik (DE-588)4226777-8 gnd rswk-swf Nichtparametrischer Test (DE-588)4075372-4 s Change-point-Problem (DE-588)4598971-0 s Nichtparametrische Statistik (DE-588)4226777-8 s 1\p DE-604 Darkhovsky, B. S. Sonstige oth https://doi.org/10.1007/978-94-015-9530-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Brodsky, B. E. Non-Parametric Statistical Diagnosis Problems and Methods Statistics Family medicine Systems theory Econometrics Statistics, general Systems Theory, Control General Practice / Family Medicine Mathematical and Computational Biology Statistik Nichtparametrischer Test (DE-588)4075372-4 gnd Change-point-Problem (DE-588)4598971-0 gnd Nichtparametrische Statistik (DE-588)4226777-8 gnd |
subject_GND | (DE-588)4075372-4 (DE-588)4598971-0 (DE-588)4226777-8 |
title | Non-Parametric Statistical Diagnosis Problems and Methods |
title_auth | Non-Parametric Statistical Diagnosis Problems and Methods |
title_exact_search | Non-Parametric Statistical Diagnosis Problems and Methods |
title_full | Non-Parametric Statistical Diagnosis Problems and Methods by B. E. Brodsky, B. S. Darkhovsky |
title_fullStr | Non-Parametric Statistical Diagnosis Problems and Methods by B. E. Brodsky, B. S. Darkhovsky |
title_full_unstemmed | Non-Parametric Statistical Diagnosis Problems and Methods by B. E. Brodsky, B. S. Darkhovsky |
title_short | Non-Parametric Statistical Diagnosis |
title_sort | non parametric statistical diagnosis problems and methods |
title_sub | Problems and Methods |
topic | Statistics Family medicine Systems theory Econometrics Statistics, general Systems Theory, Control General Practice / Family Medicine Mathematical and Computational Biology Statistik Nichtparametrischer Test (DE-588)4075372-4 gnd Change-point-Problem (DE-588)4598971-0 gnd Nichtparametrische Statistik (DE-588)4226777-8 gnd |
topic_facet | Statistics Family medicine Systems theory Econometrics Statistics, general Systems Theory, Control General Practice / Family Medicine Mathematical and Computational Biology Statistik Nichtparametrischer Test Change-point-Problem Nichtparametrische Statistik |
url | https://doi.org/10.1007/978-94-015-9530-8 |
work_keys_str_mv | AT brodskybe nonparametricstatisticaldiagnosisproblemsandmethods AT darkhovskybs nonparametricstatisticaldiagnosisproblemsandmethods |