Algebraic Foundations of Many-Valued Reasoning:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
2000
|
Schriftenreihe: | Trends in Logic, Studia Logica Library
7 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The aim of this book is to give self-contained proofs of all basic results concerning the infinite-valued proposition al calculus of Lukasiewicz and its algebras, Chang's MV -algebras. This book is for self-study: with the possible exception of Chapter 9 on advanced topics, the only prerequisite for the reader is some acquaintance with classical propositional logic, and elementary algebra and topology. In this book it is not our aim to give an account of Lukasiewicz's motivations for adding new truth values: readers interested in this topic will find appropriate references in Chapter 10. Also, we shall not explain why Lukasiewicz infinite-valued propositional logic is a basic ingredient of any logical treatment of imprecise notions: Hajek's book in this series on Trends in Logic contains the most authoritative explanations. However, in order to show that MV-algebras stand to infinite-valued logic as boolean algebras stand to two-valued logic, we shall devote Chapter 5 to Ulam's game of Twenty Questions with lies/errors, as a natural context where infinite-valued propositions, connectives and inferences are used. While several other semantics for infinite-valued logic are known in the literature-notably Giles' game theoretic semantics based on subjective probabilities-still the transition from two-valued to many-valued propositonal logic can hardly be modelled by anything simpler than the transformation of the familiar game of Twenty Questions into Ulam game with lies/errors |
Beschreibung: | 1 Online-Ressource (IX, 233 p) |
ISBN: | 9789401594806 9789048153367 |
ISSN: | 1572-6126 |
DOI: | 10.1007/978-94-015-9480-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042424143 | ||
003 | DE-604 | ||
005 | 20170913 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2000 |||| o||u| ||||||eng d | ||
020 | |a 9789401594806 |c Online |9 978-94-015-9480-6 | ||
020 | |a 9789048153367 |c Print |9 978-90-481-5336-7 | ||
024 | 7 | |a 10.1007/978-94-015-9480-6 |2 doi | |
035 | |a (OCoLC)905377737 | ||
035 | |a (DE-599)BVBBV042424143 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 160 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Cignoli, Roberto L. O. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Algebraic Foundations of Many-Valued Reasoning |c by Roberto L. O. Cignoli, Itala M. L. D'Ottaviano, Daniele Mundici |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 2000 | |
300 | |a 1 Online-Ressource (IX, 233 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Trends in Logic, Studia Logica Library |v 7 |x 1572-6126 | |
500 | |a The aim of this book is to give self-contained proofs of all basic results concerning the infinite-valued proposition al calculus of Lukasiewicz and its algebras, Chang's MV -algebras. This book is for self-study: with the possible exception of Chapter 9 on advanced topics, the only prerequisite for the reader is some acquaintance with classical propositional logic, and elementary algebra and topology. In this book it is not our aim to give an account of Lukasiewicz's motivations for adding new truth values: readers interested in this topic will find appropriate references in Chapter 10. Also, we shall not explain why Lukasiewicz infinite-valued propositional logic is a basic ingredient of any logical treatment of imprecise notions: Hajek's book in this series on Trends in Logic contains the most authoritative explanations. However, in order to show that MV-algebras stand to infinite-valued logic as boolean algebras stand to two-valued logic, we shall devote Chapter 5 to Ulam's game of Twenty Questions with lies/errors, as a natural context where infinite-valued propositions, connectives and inferences are used. While several other semantics for infinite-valued logic are known in the literature-notably Giles' game theoretic semantics based on subjective probabilities-still the transition from two-valued to many-valued propositonal logic can hardly be modelled by anything simpler than the transformation of the familiar game of Twenty Questions into Ulam game with lies/errors | ||
650 | 4 | |a Philosophy (General) | |
650 | 4 | |a Logic | |
650 | 4 | |a Computational complexity | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Algebra | |
650 | 4 | |a Logic, Symbolic and mathematical | |
650 | 4 | |a Philosophy | |
650 | 4 | |a Order, Lattices, Ordered Algebraic Structures | |
650 | 4 | |a Mathematical Logic and Foundations | |
650 | 4 | |a Discrete Mathematics in Computer Science | |
650 | 4 | |a Artificial Intelligence (incl. Robotics) | |
650 | 4 | |a Künstliche Intelligenz | |
650 | 4 | |a Philosophie | |
650 | 0 | 7 | |a Mehrwertige Logik |0 (DE-588)4169335-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mehrwertige Logik |0 (DE-588)4169335-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a D'Ottaviano, Itala M. L. |e Sonstige |4 oth | |
700 | 1 | |a Mundici, Daniele |d 1946- |e Sonstige |0 (DE-588)1089443404 |4 oth | |
830 | 0 | |a Trends in Logic, Studia Logica Library |v 7 |w (DE-604)BV011512969 |9 7 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-015-9480-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859560 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153100741640192 |
---|---|
any_adam_object | |
author | Cignoli, Roberto L. O. |
author_GND | (DE-588)1089443404 |
author_facet | Cignoli, Roberto L. O. |
author_role | aut |
author_sort | Cignoli, Roberto L. O. |
author_variant | r l o c rlo rloc |
building | Verbundindex |
bvnumber | BV042424143 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)905377737 (DE-599)BVBBV042424143 |
dewey-full | 160 |
dewey-hundreds | 100 - Philosophy & psychology |
dewey-ones | 160 - Philosophical logic |
dewey-raw | 160 |
dewey-search | 160 |
dewey-sort | 3160 |
dewey-tens | 160 - Philosophical logic |
discipline | Mathematik Philosophie |
doi_str_mv | 10.1007/978-94-015-9480-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03714nmm a2200601zcb4500</leader><controlfield tag="001">BV042424143</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170913 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401594806</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-015-9480-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048153367</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-5336-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-015-9480-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)905377737</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424143</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">160</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cignoli, Roberto L. O.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algebraic Foundations of Many-Valued Reasoning</subfield><subfield code="c">by Roberto L. O. Cignoli, Itala M. L. D'Ottaviano, Daniele Mundici</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 233 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Trends in Logic, Studia Logica Library</subfield><subfield code="v">7</subfield><subfield code="x">1572-6126</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The aim of this book is to give self-contained proofs of all basic results concerning the infinite-valued proposition al calculus of Lukasiewicz and its algebras, Chang's MV -algebras. This book is for self-study: with the possible exception of Chapter 9 on advanced topics, the only prerequisite for the reader is some acquaintance with classical propositional logic, and elementary algebra and topology. In this book it is not our aim to give an account of Lukasiewicz's motivations for adding new truth values: readers interested in this topic will find appropriate references in Chapter 10. Also, we shall not explain why Lukasiewicz infinite-valued propositional logic is a basic ingredient of any logical treatment of imprecise notions: Hajek's book in this series on Trends in Logic contains the most authoritative explanations. However, in order to show that MV-algebras stand to infinite-valued logic as boolean algebras stand to two-valued logic, we shall devote Chapter 5 to Ulam's game of Twenty Questions with lies/errors, as a natural context where infinite-valued propositions, connectives and inferences are used. While several other semantics for infinite-valued logic are known in the literature-notably Giles' game theoretic semantics based on subjective probabilities-still the transition from two-valued to many-valued propositonal logic can hardly be modelled by anything simpler than the transformation of the familiar game of Twenty Questions into Ulam game with lies/errors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Philosophy (General)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Philosophy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Order, Lattices, Ordered Algebraic Structures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Logic and Foundations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete Mathematics in Computer Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence (incl. Robotics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Künstliche Intelligenz</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Philosophie</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrwertige Logik</subfield><subfield code="0">(DE-588)4169335-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mehrwertige Logik</subfield><subfield code="0">(DE-588)4169335-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">D'Ottaviano, Itala M. L.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mundici, Daniele</subfield><subfield code="d">1946-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1089443404</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Trends in Logic, Studia Logica Library</subfield><subfield code="v">7</subfield><subfield code="w">(DE-604)BV011512969</subfield><subfield code="9">7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-015-9480-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859560</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042424143 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:14Z |
institution | BVB |
isbn | 9789401594806 9789048153367 |
issn | 1572-6126 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859560 |
oclc_num | 905377737 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (IX, 233 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer Netherlands |
record_format | marc |
series | Trends in Logic, Studia Logica Library |
series2 | Trends in Logic, Studia Logica Library |
spelling | Cignoli, Roberto L. O. Verfasser aut Algebraic Foundations of Many-Valued Reasoning by Roberto L. O. Cignoli, Itala M. L. D'Ottaviano, Daniele Mundici Dordrecht Springer Netherlands 2000 1 Online-Ressource (IX, 233 p) txt rdacontent c rdamedia cr rdacarrier Trends in Logic, Studia Logica Library 7 1572-6126 The aim of this book is to give self-contained proofs of all basic results concerning the infinite-valued proposition al calculus of Lukasiewicz and its algebras, Chang's MV -algebras. This book is for self-study: with the possible exception of Chapter 9 on advanced topics, the only prerequisite for the reader is some acquaintance with classical propositional logic, and elementary algebra and topology. In this book it is not our aim to give an account of Lukasiewicz's motivations for adding new truth values: readers interested in this topic will find appropriate references in Chapter 10. Also, we shall not explain why Lukasiewicz infinite-valued propositional logic is a basic ingredient of any logical treatment of imprecise notions: Hajek's book in this series on Trends in Logic contains the most authoritative explanations. However, in order to show that MV-algebras stand to infinite-valued logic as boolean algebras stand to two-valued logic, we shall devote Chapter 5 to Ulam's game of Twenty Questions with lies/errors, as a natural context where infinite-valued propositions, connectives and inferences are used. While several other semantics for infinite-valued logic are known in the literature-notably Giles' game theoretic semantics based on subjective probabilities-still the transition from two-valued to many-valued propositonal logic can hardly be modelled by anything simpler than the transformation of the familiar game of Twenty Questions into Ulam game with lies/errors Philosophy (General) Logic Computational complexity Artificial intelligence Algebra Logic, Symbolic and mathematical Philosophy Order, Lattices, Ordered Algebraic Structures Mathematical Logic and Foundations Discrete Mathematics in Computer Science Artificial Intelligence (incl. Robotics) Künstliche Intelligenz Philosophie Mehrwertige Logik (DE-588)4169335-8 gnd rswk-swf Mehrwertige Logik (DE-588)4169335-8 s 1\p DE-604 D'Ottaviano, Itala M. L. Sonstige oth Mundici, Daniele 1946- Sonstige (DE-588)1089443404 oth Trends in Logic, Studia Logica Library 7 (DE-604)BV011512969 7 https://doi.org/10.1007/978-94-015-9480-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Cignoli, Roberto L. O. Algebraic Foundations of Many-Valued Reasoning Trends in Logic, Studia Logica Library Philosophy (General) Logic Computational complexity Artificial intelligence Algebra Logic, Symbolic and mathematical Philosophy Order, Lattices, Ordered Algebraic Structures Mathematical Logic and Foundations Discrete Mathematics in Computer Science Artificial Intelligence (incl. Robotics) Künstliche Intelligenz Philosophie Mehrwertige Logik (DE-588)4169335-8 gnd |
subject_GND | (DE-588)4169335-8 |
title | Algebraic Foundations of Many-Valued Reasoning |
title_auth | Algebraic Foundations of Many-Valued Reasoning |
title_exact_search | Algebraic Foundations of Many-Valued Reasoning |
title_full | Algebraic Foundations of Many-Valued Reasoning by Roberto L. O. Cignoli, Itala M. L. D'Ottaviano, Daniele Mundici |
title_fullStr | Algebraic Foundations of Many-Valued Reasoning by Roberto L. O. Cignoli, Itala M. L. D'Ottaviano, Daniele Mundici |
title_full_unstemmed | Algebraic Foundations of Many-Valued Reasoning by Roberto L. O. Cignoli, Itala M. L. D'Ottaviano, Daniele Mundici |
title_short | Algebraic Foundations of Many-Valued Reasoning |
title_sort | algebraic foundations of many valued reasoning |
topic | Philosophy (General) Logic Computational complexity Artificial intelligence Algebra Logic, Symbolic and mathematical Philosophy Order, Lattices, Ordered Algebraic Structures Mathematical Logic and Foundations Discrete Mathematics in Computer Science Artificial Intelligence (incl. Robotics) Künstliche Intelligenz Philosophie Mehrwertige Logik (DE-588)4169335-8 gnd |
topic_facet | Philosophy (General) Logic Computational complexity Artificial intelligence Algebra Logic, Symbolic and mathematical Philosophy Order, Lattices, Ordered Algebraic Structures Mathematical Logic and Foundations Discrete Mathematics in Computer Science Artificial Intelligence (incl. Robotics) Künstliche Intelligenz Philosophie Mehrwertige Logik |
url | https://doi.org/10.1007/978-94-015-9480-6 |
volume_link | (DE-604)BV011512969 |
work_keys_str_mv | AT cignolirobertolo algebraicfoundationsofmanyvaluedreasoning AT dottavianoitalaml algebraicfoundationsofmanyvaluedreasoning AT mundicidaniele algebraicfoundationsofmanyvaluedreasoning |