Stochastic Processes and Operator Calculus on Quantum Groups:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1999
|
Schriftenreihe: | Mathematics and Its Applications
490 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Quantum groups have been investigated rather deeply in mathematical physics over the last decade. Among the most prominent contributions in this area let us mention the works of V.G. Drinfeld, S.L. Woronowicz, S. Majid. Prob ability the ory on quantum groups has developed in several directions (see works of P. Biane, RL. Hudson and K.R Partasarathy, P.A. Meyer, M. Schürmann, D. Voiculescu). The aim of this book is to present several new aspects related to quantum groups: operator calculus, dual representations, stochastic processes and diffusions, Appell polynomials and systems in connection with evolution equations. Much of the ma terial is scattered throughout available literature, however, we have nowhere found in accessible form all of this material collected. The presentation of representation theory in connection with Appell systems is original with the authors. Stochastic processes (example: Brownian motion, diffusion processes, Levy processes) are in vestigated and several examples are presented. As a text the work is intended to be accessible to graduate students and researchers not specialised in quantum prob ability. We would like to acknowledge our colleagues P. Feinsilver, R Lenzceswki, D. |
Beschreibung: | 1 Online-Ressource (VIII, 232 p) |
ISBN: | 9789401592772 9789048152902 |
DOI: | 10.1007/978-94-015-9277-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042424126 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1999 |||| o||u| ||||||eng d | ||
020 | |a 9789401592772 |c Online |9 978-94-015-9277-2 | ||
020 | |a 9789048152902 |c Print |9 978-90-481-5290-2 | ||
024 | 7 | |a 10.1007/978-94-015-9277-2 |2 doi | |
035 | |a (OCoLC)1184498965 | ||
035 | |a (DE-599)BVBBV042424126 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Franz, Uwe |e Verfasser |4 aut | |
245 | 1 | 0 | |a Stochastic Processes and Operator Calculus on Quantum Groups |c by Uwe Franz, René Schott |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1999 | |
300 | |a 1 Online-Ressource (VIII, 232 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and Its Applications |v 490 | |
500 | |a Quantum groups have been investigated rather deeply in mathematical physics over the last decade. Among the most prominent contributions in this area let us mention the works of V.G. Drinfeld, S.L. Woronowicz, S. Majid. Prob ability the ory on quantum groups has developed in several directions (see works of P. Biane, RL. Hudson and K.R Partasarathy, P.A. Meyer, M. Schürmann, D. Voiculescu). The aim of this book is to present several new aspects related to quantum groups: operator calculus, dual representations, stochastic processes and diffusions, Appell polynomials and systems in connection with evolution equations. Much of the ma terial is scattered throughout available literature, however, we have nowhere found in accessible form all of this material collected. The presentation of representation theory in connection with Appell systems is original with the authors. Stochastic processes (example: Brownian motion, diffusion processes, Levy processes) are in vestigated and several examples are presented. As a text the work is intended to be accessible to graduate students and researchers not specialised in quantum prob ability. We would like to acknowledge our colleagues P. Feinsilver, R Lenzceswki, D. | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Group theory | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Group Theory and Generalizations | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantengruppe |0 (DE-588)4252437-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Operatorenrechnung |0 (DE-588)4389717-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |D s |
689 | 0 | 1 | |a Operatorenrechnung |0 (DE-588)4389717-4 |D s |
689 | 0 | 2 | |a Quantengruppe |0 (DE-588)4252437-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Schott, René |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-015-9277-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859543 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153100710182912 |
---|---|
any_adam_object | |
author | Franz, Uwe |
author_facet | Franz, Uwe |
author_role | aut |
author_sort | Franz, Uwe |
author_variant | u f uf |
building | Verbundindex |
bvnumber | BV042424126 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184498965 (DE-599)BVBBV042424126 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-015-9277-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03254nmm a2200553zcb4500</leader><controlfield tag="001">BV042424126</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401592772</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-015-9277-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048152902</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-5290-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-015-9277-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184498965</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424126</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Franz, Uwe</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic Processes and Operator Calculus on Quantum Groups</subfield><subfield code="c">by Uwe Franz, René Schott</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 232 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">490</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Quantum groups have been investigated rather deeply in mathematical physics over the last decade. Among the most prominent contributions in this area let us mention the works of V.G. Drinfeld, S.L. Woronowicz, S. Majid. Prob ability the ory on quantum groups has developed in several directions (see works of P. Biane, RL. Hudson and K.R Partasarathy, P.A. Meyer, M. Schürmann, D. Voiculescu). The aim of this book is to present several new aspects related to quantum groups: operator calculus, dual representations, stochastic processes and diffusions, Appell polynomials and systems in connection with evolution equations. Much of the ma terial is scattered throughout available literature, however, we have nowhere found in accessible form all of this material collected. The presentation of representation theory in connection with Appell systems is original with the authors. Stochastic processes (example: Brownian motion, diffusion processes, Levy processes) are in vestigated and several examples are presented. As a text the work is intended to be accessible to graduate students and researchers not specialised in quantum prob ability. We would like to acknowledge our colleagues P. Feinsilver, R Lenzceswki, D.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory and Generalizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantengruppe</subfield><subfield code="0">(DE-588)4252437-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operatorenrechnung</subfield><subfield code="0">(DE-588)4389717-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Operatorenrechnung</subfield><subfield code="0">(DE-588)4389717-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Quantengruppe</subfield><subfield code="0">(DE-588)4252437-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schott, René</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-015-9277-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859543</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042424126 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:14Z |
institution | BVB |
isbn | 9789401592772 9789048152902 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859543 |
oclc_num | 1184498965 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 232 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Mathematics and Its Applications |
spelling | Franz, Uwe Verfasser aut Stochastic Processes and Operator Calculus on Quantum Groups by Uwe Franz, René Schott Dordrecht Springer Netherlands 1999 1 Online-Ressource (VIII, 232 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 490 Quantum groups have been investigated rather deeply in mathematical physics over the last decade. Among the most prominent contributions in this area let us mention the works of V.G. Drinfeld, S.L. Woronowicz, S. Majid. Prob ability the ory on quantum groups has developed in several directions (see works of P. Biane, RL. Hudson and K.R Partasarathy, P.A. Meyer, M. Schürmann, D. Voiculescu). The aim of this book is to present several new aspects related to quantum groups: operator calculus, dual representations, stochastic processes and diffusions, Appell polynomials and systems in connection with evolution equations. Much of the ma terial is scattered throughout available literature, however, we have nowhere found in accessible form all of this material collected. The presentation of representation theory in connection with Appell systems is original with the authors. Stochastic processes (example: Brownian motion, diffusion processes, Levy processes) are in vestigated and several examples are presented. As a text the work is intended to be accessible to graduate students and researchers not specialised in quantum prob ability. We would like to acknowledge our colleagues P. Feinsilver, R Lenzceswki, D. Mathematics Group theory Distribution (Probability theory) Probability Theory and Stochastic Processes Theoretical, Mathematical and Computational Physics Group Theory and Generalizations Mathematik Stochastischer Prozess (DE-588)4057630-9 gnd rswk-swf Quantengruppe (DE-588)4252437-4 gnd rswk-swf Operatorenrechnung (DE-588)4389717-4 gnd rswk-swf Stochastischer Prozess (DE-588)4057630-9 s Operatorenrechnung (DE-588)4389717-4 s Quantengruppe (DE-588)4252437-4 s 1\p DE-604 Schott, René Sonstige oth https://doi.org/10.1007/978-94-015-9277-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Franz, Uwe Stochastic Processes and Operator Calculus on Quantum Groups Mathematics Group theory Distribution (Probability theory) Probability Theory and Stochastic Processes Theoretical, Mathematical and Computational Physics Group Theory and Generalizations Mathematik Stochastischer Prozess (DE-588)4057630-9 gnd Quantengruppe (DE-588)4252437-4 gnd Operatorenrechnung (DE-588)4389717-4 gnd |
subject_GND | (DE-588)4057630-9 (DE-588)4252437-4 (DE-588)4389717-4 |
title | Stochastic Processes and Operator Calculus on Quantum Groups |
title_auth | Stochastic Processes and Operator Calculus on Quantum Groups |
title_exact_search | Stochastic Processes and Operator Calculus on Quantum Groups |
title_full | Stochastic Processes and Operator Calculus on Quantum Groups by Uwe Franz, René Schott |
title_fullStr | Stochastic Processes and Operator Calculus on Quantum Groups by Uwe Franz, René Schott |
title_full_unstemmed | Stochastic Processes and Operator Calculus on Quantum Groups by Uwe Franz, René Schott |
title_short | Stochastic Processes and Operator Calculus on Quantum Groups |
title_sort | stochastic processes and operator calculus on quantum groups |
topic | Mathematics Group theory Distribution (Probability theory) Probability Theory and Stochastic Processes Theoretical, Mathematical and Computational Physics Group Theory and Generalizations Mathematik Stochastischer Prozess (DE-588)4057630-9 gnd Quantengruppe (DE-588)4252437-4 gnd Operatorenrechnung (DE-588)4389717-4 gnd |
topic_facet | Mathematics Group theory Distribution (Probability theory) Probability Theory and Stochastic Processes Theoretical, Mathematical and Computational Physics Group Theory and Generalizations Mathematik Stochastischer Prozess Quantengruppe Operatorenrechnung |
url | https://doi.org/10.1007/978-94-015-9277-2 |
work_keys_str_mv | AT franzuwe stochasticprocessesandoperatorcalculusonquantumgroups AT schottrene stochasticprocessesandoperatorcalculusonquantumgroups |