Topological Fixed Point Theory of Multivalued Mappings:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1999
|
Schriftenreihe: | Mathematics and Its Applications
495 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book is an attempt to give a systematic presentation of results and meth ods which concern the fixed point theory of multivalued mappings and some of its applications. In selecting the material we have restricted ourselves to study ing topological methods in the fixed point theory of multivalued mappings and applications, mainly to differential inclusions. Thus in Chapter III the approximation (on the graph) method in fixed point theory of multi valued mappings is presented. Chapter IV is devoted to the homo logical methods and contains more general results, e. g. , the Lefschetz Fixed Point Theorem, the fixed point index and the topological degree theory. In Chapter V applications to some special problems in fixed point theory are formulated. Then in the last chapter a direct application's to differential inclusions are presented. Note that Chapter I and Chapter II have an auxiliary character, and only results con nected with the Banach Contraction Principle (see Chapter II) are strictly related to topological methods in the fixed point theory. In the last section of our book (see Section 75) we give a bibliographical guide and also signal some further results which are not contained in our monograph. The author thanks several colleagues and my wife Maria who read and com mented on the manuscript. These include J. Andres, A. Buraczewski, G. Gabor, A. Gorka, M. Gorniewicz, S. Park and A. Wieczorek. The author wish to express his gratitude to P. Konstanty for preparing the electronic version of this monograph |
Beschreibung: | 1 Online-Ressource (IX, 403 p) |
ISBN: | 9789401591959 9789401591973 |
DOI: | 10.1007/978-94-015-9195-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042424120 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1999 |||| o||u| ||||||eng d | ||
020 | |a 9789401591959 |c Online |9 978-94-015-9195-9 | ||
020 | |a 9789401591973 |c Print |9 978-94-015-9197-3 | ||
024 | 7 | |a 10.1007/978-94-015-9195-9 |2 doi | |
035 | |a (OCoLC)1184718648 | ||
035 | |a (DE-599)BVBBV042424120 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 514.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Górniewicz, Lech |e Verfasser |4 aut | |
245 | 1 | 0 | |a Topological Fixed Point Theory of Multivalued Mappings |c by Lech Górniewicz |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1999 | |
300 | |a 1 Online-Ressource (IX, 403 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and Its Applications |v 495 | |
500 | |a This book is an attempt to give a systematic presentation of results and meth ods which concern the fixed point theory of multivalued mappings and some of its applications. In selecting the material we have restricted ourselves to study ing topological methods in the fixed point theory of multivalued mappings and applications, mainly to differential inclusions. Thus in Chapter III the approximation (on the graph) method in fixed point theory of multi valued mappings is presented. Chapter IV is devoted to the homo logical methods and contains more general results, e. g. , the Lefschetz Fixed Point Theorem, the fixed point index and the topological degree theory. In Chapter V applications to some special problems in fixed point theory are formulated. Then in the last chapter a direct application's to differential inclusions are presented. Note that Chapter I and Chapter II have an auxiliary character, and only results con nected with the Banach Contraction Principle (see Chapter II) are strictly related to topological methods in the fixed point theory. In the last section of our book (see Section 75) we give a bibliographical guide and also signal some further results which are not contained in our monograph. The author thanks several colleagues and my wife Maria who read and com mented on the manuscript. These include J. Andres, A. Buraczewski, G. Gabor, A. Gorka, M. Gorniewicz, S. Park and A. Wieczorek. The author wish to express his gratitude to P. Konstanty for preparing the electronic version of this monograph | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Operator theory | |
650 | 4 | |a Differential Equations | |
650 | 4 | |a Potential theory (Mathematics) | |
650 | 4 | |a Topology | |
650 | 4 | |a Algebraic topology | |
650 | 4 | |a Algebraic Topology | |
650 | 4 | |a Ordinary Differential Equations | |
650 | 4 | |a Operator Theory | |
650 | 4 | |a Potential Theory | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Topologie |0 (DE-588)4060425-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mengenwertige Abbildung |0 (DE-588)4270772-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mehrwertige Abbildung |0 (DE-588)4744698-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fixpunkttheorie |0 (DE-588)4293945-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Fixpunkttheorie |0 (DE-588)4293945-8 |D s |
689 | 0 | 1 | |a Topologie |0 (DE-588)4060425-1 |D s |
689 | 0 | 2 | |a Mehrwertige Abbildung |0 (DE-588)4744698-5 |D s |
689 | 0 | 3 | |a Mengenwertige Abbildung |0 (DE-588)4270772-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-015-9195-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859537 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153100691308544 |
---|---|
any_adam_object | |
author | Górniewicz, Lech |
author_facet | Górniewicz, Lech |
author_role | aut |
author_sort | Górniewicz, Lech |
author_variant | l g lg |
building | Verbundindex |
bvnumber | BV042424120 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184718648 (DE-599)BVBBV042424120 |
dewey-full | 514.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.2 |
dewey-search | 514.2 |
dewey-sort | 3514.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-015-9195-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03711nmm a2200613zcb4500</leader><controlfield tag="001">BV042424120</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401591959</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-015-9195-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401591973</subfield><subfield code="c">Print</subfield><subfield code="9">978-94-015-9197-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-015-9195-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184718648</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424120</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Górniewicz, Lech</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Topological Fixed Point Theory of Multivalued Mappings</subfield><subfield code="c">by Lech Górniewicz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 403 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">495</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book is an attempt to give a systematic presentation of results and meth ods which concern the fixed point theory of multivalued mappings and some of its applications. In selecting the material we have restricted ourselves to study ing topological methods in the fixed point theory of multivalued mappings and applications, mainly to differential inclusions. Thus in Chapter III the approximation (on the graph) method in fixed point theory of multi valued mappings is presented. Chapter IV is devoted to the homo logical methods and contains more general results, e. g. , the Lefschetz Fixed Point Theorem, the fixed point index and the topological degree theory. In Chapter V applications to some special problems in fixed point theory are formulated. Then in the last chapter a direct application's to differential inclusions are presented. Note that Chapter I and Chapter II have an auxiliary character, and only results con nected with the Banach Contraction Principle (see Chapter II) are strictly related to topological methods in the fixed point theory. In the last section of our book (see Section 75) we give a bibliographical guide and also signal some further results which are not contained in our monograph. The author thanks several colleagues and my wife Maria who read and com mented on the manuscript. These include J. Andres, A. Buraczewski, G. Gabor, A. Gorka, M. Gorniewicz, S. Park and A. Wieczorek. The author wish to express his gratitude to P. Konstanty for preparing the electronic version of this monograph</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Potential theory (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordinary Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Potential Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mengenwertige Abbildung</subfield><subfield code="0">(DE-588)4270772-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrwertige Abbildung</subfield><subfield code="0">(DE-588)4744698-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fixpunkttheorie</subfield><subfield code="0">(DE-588)4293945-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fixpunkttheorie</subfield><subfield code="0">(DE-588)4293945-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mehrwertige Abbildung</subfield><subfield code="0">(DE-588)4744698-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Mengenwertige Abbildung</subfield><subfield code="0">(DE-588)4270772-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-015-9195-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859537</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042424120 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:14Z |
institution | BVB |
isbn | 9789401591959 9789401591973 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859537 |
oclc_num | 1184718648 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (IX, 403 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Mathematics and Its Applications |
spelling | Górniewicz, Lech Verfasser aut Topological Fixed Point Theory of Multivalued Mappings by Lech Górniewicz Dordrecht Springer Netherlands 1999 1 Online-Ressource (IX, 403 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 495 This book is an attempt to give a systematic presentation of results and meth ods which concern the fixed point theory of multivalued mappings and some of its applications. In selecting the material we have restricted ourselves to study ing topological methods in the fixed point theory of multivalued mappings and applications, mainly to differential inclusions. Thus in Chapter III the approximation (on the graph) method in fixed point theory of multi valued mappings is presented. Chapter IV is devoted to the homo logical methods and contains more general results, e. g. , the Lefschetz Fixed Point Theorem, the fixed point index and the topological degree theory. In Chapter V applications to some special problems in fixed point theory are formulated. Then in the last chapter a direct application's to differential inclusions are presented. Note that Chapter I and Chapter II have an auxiliary character, and only results con nected with the Banach Contraction Principle (see Chapter II) are strictly related to topological methods in the fixed point theory. In the last section of our book (see Section 75) we give a bibliographical guide and also signal some further results which are not contained in our monograph. The author thanks several colleagues and my wife Maria who read and com mented on the manuscript. These include J. Andres, A. Buraczewski, G. Gabor, A. Gorka, M. Gorniewicz, S. Park and A. Wieczorek. The author wish to express his gratitude to P. Konstanty for preparing the electronic version of this monograph Mathematics Operator theory Differential Equations Potential theory (Mathematics) Topology Algebraic topology Algebraic Topology Ordinary Differential Equations Operator Theory Potential Theory Mathematik Topologie (DE-588)4060425-1 gnd rswk-swf Mengenwertige Abbildung (DE-588)4270772-9 gnd rswk-swf Mehrwertige Abbildung (DE-588)4744698-5 gnd rswk-swf Fixpunkttheorie (DE-588)4293945-8 gnd rswk-swf Fixpunkttheorie (DE-588)4293945-8 s Topologie (DE-588)4060425-1 s Mehrwertige Abbildung (DE-588)4744698-5 s Mengenwertige Abbildung (DE-588)4270772-9 s 1\p DE-604 https://doi.org/10.1007/978-94-015-9195-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Górniewicz, Lech Topological Fixed Point Theory of Multivalued Mappings Mathematics Operator theory Differential Equations Potential theory (Mathematics) Topology Algebraic topology Algebraic Topology Ordinary Differential Equations Operator Theory Potential Theory Mathematik Topologie (DE-588)4060425-1 gnd Mengenwertige Abbildung (DE-588)4270772-9 gnd Mehrwertige Abbildung (DE-588)4744698-5 gnd Fixpunkttheorie (DE-588)4293945-8 gnd |
subject_GND | (DE-588)4060425-1 (DE-588)4270772-9 (DE-588)4744698-5 (DE-588)4293945-8 |
title | Topological Fixed Point Theory of Multivalued Mappings |
title_auth | Topological Fixed Point Theory of Multivalued Mappings |
title_exact_search | Topological Fixed Point Theory of Multivalued Mappings |
title_full | Topological Fixed Point Theory of Multivalued Mappings by Lech Górniewicz |
title_fullStr | Topological Fixed Point Theory of Multivalued Mappings by Lech Górniewicz |
title_full_unstemmed | Topological Fixed Point Theory of Multivalued Mappings by Lech Górniewicz |
title_short | Topological Fixed Point Theory of Multivalued Mappings |
title_sort | topological fixed point theory of multivalued mappings |
topic | Mathematics Operator theory Differential Equations Potential theory (Mathematics) Topology Algebraic topology Algebraic Topology Ordinary Differential Equations Operator Theory Potential Theory Mathematik Topologie (DE-588)4060425-1 gnd Mengenwertige Abbildung (DE-588)4270772-9 gnd Mehrwertige Abbildung (DE-588)4744698-5 gnd Fixpunkttheorie (DE-588)4293945-8 gnd |
topic_facet | Mathematics Operator theory Differential Equations Potential theory (Mathematics) Topology Algebraic topology Algebraic Topology Ordinary Differential Equations Operator Theory Potential Theory Mathematik Topologie Mengenwertige Abbildung Mehrwertige Abbildung Fixpunkttheorie |
url | https://doi.org/10.1007/978-94-015-9195-9 |
work_keys_str_mv | AT gorniewiczlech topologicalfixedpointtheoryofmultivaluedmappings |