G-Convergence and Homogenization of Nonlinear Partial Differential Operators:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1997
|
Schriftenreihe: | Mathematics and Its Applications
422 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Various applications of the homogenization theory of partial differential equations resulted in the further development of this branch of mathematics, attracting an increasing interest of both mathematicians and experts in other fields. In general, the theory deals with the following: Let Ak be a sequence of differential operators, linear or nonlinepr. We want to examine the asymptotic behaviour of solutions uk to the equation Auk = f, as k ~ =, provided coefficients of Ak contain rapid oscillations. This is the case, e. g. when the coefficients are of the form a(e/x), where the function a(y) is periodic and ek ~ 0 ask~=. Of course, of oscillation, like almost periodic or random homogeneous, are of many other kinds interest as well. It seems a good idea to find a differential operator A such that uk ~ u, where u is a solution of the limit equation Au = f Such a limit operator is usually called the homogenized operator for the sequence Ak . Sometimes, the term "averaged" is used instead of "homogenized". Let us look more closely what kind of convergence one can expect for uk. Usually, we have some a priori bound for the solutions. However, due to the rapid oscillations of the coefficients, such a bound may be uniform with respect to k in the corresponding energy norm only. Therefore, we may have convergence of solutions only in the weak topology of the energy space |
Beschreibung: | 1 Online-Ressource (XIII, 258 p) |
ISBN: | 9789401589574 9789048149001 |
DOI: | 10.1007/978-94-015-8957-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042424108 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1997 |||| o||u| ||||||eng d | ||
020 | |a 9789401589574 |c Online |9 978-94-015-8957-4 | ||
020 | |a 9789048149001 |c Print |9 978-90-481-4900-1 | ||
024 | 7 | |a 10.1007/978-94-015-8957-4 |2 doi | |
035 | |a (OCoLC)1165500004 | ||
035 | |a (DE-599)BVBBV042424108 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.353 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Pankov, Alexander |e Verfasser |4 aut | |
245 | 1 | 0 | |a G-Convergence and Homogenization of Nonlinear Partial Differential Operators |c by Alexander Pankov |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1997 | |
300 | |a 1 Online-Ressource (XIII, 258 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and Its Applications |v 422 | |
500 | |a Various applications of the homogenization theory of partial differential equations resulted in the further development of this branch of mathematics, attracting an increasing interest of both mathematicians and experts in other fields. In general, the theory deals with the following: Let Ak be a sequence of differential operators, linear or nonlinepr. We want to examine the asymptotic behaviour of solutions uk to the equation Auk = f, as k ~ =, provided coefficients of Ak contain rapid oscillations. This is the case, e. g. when the coefficients are of the form a(e/x), where the function a(y) is periodic and ek ~ 0 ask~=. Of course, of oscillation, like almost periodic or random homogeneous, are of many other kinds interest as well. It seems a good idea to find a differential operator A such that uk ~ u, where u is a solution of the limit equation Au = f Such a limit operator is usually called the homogenized operator for the sequence Ak . Sometimes, the term "averaged" is used instead of "homogenized". Let us look more closely what kind of convergence one can expect for uk. Usually, we have some a priori bound for the solutions. However, due to the rapid oscillations of the coefficients, such a bound may be uniform with respect to k in the corresponding energy norm only. Therefore, we may have convergence of solutions only in the weak topology of the energy space | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Nichtlinearer partieller Differentialoperator |0 (DE-588)4171764-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Homogenisierung |g Mathematik |0 (DE-588)4403079-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konvergenz |0 (DE-588)4032326-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlinearer partieller Differentialoperator |0 (DE-588)4171764-8 |D s |
689 | 0 | 1 | |a Konvergenz |0 (DE-588)4032326-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Nichtlinearer partieller Differentialoperator |0 (DE-588)4171764-8 |D s |
689 | 1 | 1 | |a Homogenisierung |g Mathematik |0 (DE-588)4403079-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-015-8957-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859525 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153100670337024 |
---|---|
any_adam_object | |
author | Pankov, Alexander |
author_facet | Pankov, Alexander |
author_role | aut |
author_sort | Pankov, Alexander |
author_variant | a p ap |
building | Verbundindex |
bvnumber | BV042424108 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165500004 (DE-599)BVBBV042424108 |
dewey-full | 515.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.353 |
dewey-search | 515.353 |
dewey-sort | 3515.353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-015-8957-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03480nmm a2200541zcb4500</leader><controlfield tag="001">BV042424108</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401589574</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-015-8957-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048149001</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-4900-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-015-8957-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165500004</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424108</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pankov, Alexander</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">G-Convergence and Homogenization of Nonlinear Partial Differential Operators</subfield><subfield code="c">by Alexander Pankov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 258 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">422</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Various applications of the homogenization theory of partial differential equations resulted in the further development of this branch of mathematics, attracting an increasing interest of both mathematicians and experts in other fields. In general, the theory deals with the following: Let Ak be a sequence of differential operators, linear or nonlinepr. We want to examine the asymptotic behaviour of solutions uk to the equation Auk = f, as k ~ =, provided coefficients of Ak contain rapid oscillations. This is the case, e. g. when the coefficients are of the form a(e/x), where the function a(y) is periodic and ek ~ 0 ask~=. Of course, of oscillation, like almost periodic or random homogeneous, are of many other kinds interest as well. It seems a good idea to find a differential operator A such that uk ~ u, where u is a solution of the limit equation Au = f Such a limit operator is usually called the homogenized operator for the sequence Ak . Sometimes, the term "averaged" is used instead of "homogenized". Let us look more closely what kind of convergence one can expect for uk. Usually, we have some a priori bound for the solutions. However, due to the rapid oscillations of the coefficients, such a bound may be uniform with respect to k in the corresponding energy norm only. Therefore, we may have convergence of solutions only in the weak topology of the energy space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlinearer partieller Differentialoperator</subfield><subfield code="0">(DE-588)4171764-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homogenisierung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4403079-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvergenz</subfield><subfield code="0">(DE-588)4032326-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlinearer partieller Differentialoperator</subfield><subfield code="0">(DE-588)4171764-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Konvergenz</subfield><subfield code="0">(DE-588)4032326-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Nichtlinearer partieller Differentialoperator</subfield><subfield code="0">(DE-588)4171764-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Homogenisierung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4403079-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-015-8957-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859525</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042424108 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:14Z |
institution | BVB |
isbn | 9789401589574 9789048149001 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859525 |
oclc_num | 1165500004 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIII, 258 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Mathematics and Its Applications |
spelling | Pankov, Alexander Verfasser aut G-Convergence and Homogenization of Nonlinear Partial Differential Operators by Alexander Pankov Dordrecht Springer Netherlands 1997 1 Online-Ressource (XIII, 258 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 422 Various applications of the homogenization theory of partial differential equations resulted in the further development of this branch of mathematics, attracting an increasing interest of both mathematicians and experts in other fields. In general, the theory deals with the following: Let Ak be a sequence of differential operators, linear or nonlinepr. We want to examine the asymptotic behaviour of solutions uk to the equation Auk = f, as k ~ =, provided coefficients of Ak contain rapid oscillations. This is the case, e. g. when the coefficients are of the form a(e/x), where the function a(y) is periodic and ek ~ 0 ask~=. Of course, of oscillation, like almost periodic or random homogeneous, are of many other kinds interest as well. It seems a good idea to find a differential operator A such that uk ~ u, where u is a solution of the limit equation Au = f Such a limit operator is usually called the homogenized operator for the sequence Ak . Sometimes, the term "averaged" is used instead of "homogenized". Let us look more closely what kind of convergence one can expect for uk. Usually, we have some a priori bound for the solutions. However, due to the rapid oscillations of the coefficients, such a bound may be uniform with respect to k in the corresponding energy norm only. Therefore, we may have convergence of solutions only in the weak topology of the energy space Mathematics Differential equations, partial Partial Differential Equations Mathematik Nichtlinearer partieller Differentialoperator (DE-588)4171764-8 gnd rswk-swf Homogenisierung Mathematik (DE-588)4403079-4 gnd rswk-swf Konvergenz (DE-588)4032326-2 gnd rswk-swf Nichtlinearer partieller Differentialoperator (DE-588)4171764-8 s Konvergenz (DE-588)4032326-2 s 1\p DE-604 Homogenisierung Mathematik (DE-588)4403079-4 s 2\p DE-604 https://doi.org/10.1007/978-94-015-8957-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Pankov, Alexander G-Convergence and Homogenization of Nonlinear Partial Differential Operators Mathematics Differential equations, partial Partial Differential Equations Mathematik Nichtlinearer partieller Differentialoperator (DE-588)4171764-8 gnd Homogenisierung Mathematik (DE-588)4403079-4 gnd Konvergenz (DE-588)4032326-2 gnd |
subject_GND | (DE-588)4171764-8 (DE-588)4403079-4 (DE-588)4032326-2 |
title | G-Convergence and Homogenization of Nonlinear Partial Differential Operators |
title_auth | G-Convergence and Homogenization of Nonlinear Partial Differential Operators |
title_exact_search | G-Convergence and Homogenization of Nonlinear Partial Differential Operators |
title_full | G-Convergence and Homogenization of Nonlinear Partial Differential Operators by Alexander Pankov |
title_fullStr | G-Convergence and Homogenization of Nonlinear Partial Differential Operators by Alexander Pankov |
title_full_unstemmed | G-Convergence and Homogenization of Nonlinear Partial Differential Operators by Alexander Pankov |
title_short | G-Convergence and Homogenization of Nonlinear Partial Differential Operators |
title_sort | g convergence and homogenization of nonlinear partial differential operators |
topic | Mathematics Differential equations, partial Partial Differential Equations Mathematik Nichtlinearer partieller Differentialoperator (DE-588)4171764-8 gnd Homogenisierung Mathematik (DE-588)4403079-4 gnd Konvergenz (DE-588)4032326-2 gnd |
topic_facet | Mathematics Differential equations, partial Partial Differential Equations Mathematik Nichtlinearer partieller Differentialoperator Homogenisierung Mathematik Konvergenz |
url | https://doi.org/10.1007/978-94-015-8957-4 |
work_keys_str_mv | AT pankovalexander gconvergenceandhomogenizationofnonlinearpartialdifferentialoperators |