Dynamic Impulse Systems: Theory and Applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1997
|
Schriftenreihe: | Mathematics and Its Applications
394 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | A number of optimization problems of the mechanics of space flight and the motion of walking robots and manipulators, and of quantum physics, economomics and biology, have an irregular structure: classical variational procedures do not formally make it possible to find optimal controls that, as we explain, have an impulse character. This and other well-known facts lead to the necessity for constructing dynamical models using the concept of a gener alized function (Schwartz distribution). The problem of the systematization of such models is very important. In particular, the problem of the construction of the general form of linear and nonlinear operator equations in distributions is timely. Another problem is related to the proper determination of solutions of equations that have nonlinear operations over generalized functions in their description. It is well-known that "the value of a distribution at a point" has no meaning. As a result the problem to construct the concept of stability for generalized processes arises. Finally, optimization problems for dynamic systems in distributions need finding optimality conditions. This book contains results that we have obtained in the above-mentioned directions. The aim of the book is to provide for electrical and mechanical engineers or mathematicians working in applications, a general and systematic treatment of dynamic systems based on up-to-date mathematical methods and to demonstrate the power of these methods in solving dynamics of systems and applied control problems |
Beschreibung: | 1 Online-Ressource (XI, 260 p) |
ISBN: | 9789401588935 9789048147908 |
DOI: | 10.1007/978-94-015-8893-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042424099 | ||
003 | DE-604 | ||
005 | 20171009 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1997 |||| o||u| ||||||eng d | ||
020 | |a 9789401588935 |c Online |9 978-94-015-8893-5 | ||
020 | |a 9789048147908 |c Print |9 978-90-481-4790-8 | ||
024 | 7 | |a 10.1007/978-94-015-8893-5 |2 doi | |
035 | |a (OCoLC)1184502044 | ||
035 | |a (DE-599)BVBBV042424099 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.352 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Zavalishchin, S. T. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Dynamic Impulse Systems |b Theory and Applications |c by S. T. Zavalishchin, A. N. Sesekin |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1997 | |
300 | |a 1 Online-Ressource (XI, 260 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematics and Its Applications |v 394 | |
500 | |a A number of optimization problems of the mechanics of space flight and the motion of walking robots and manipulators, and of quantum physics, economomics and biology, have an irregular structure: classical variational procedures do not formally make it possible to find optimal controls that, as we explain, have an impulse character. This and other well-known facts lead to the necessity for constructing dynamical models using the concept of a gener alized function (Schwartz distribution). The problem of the systematization of such models is very important. In particular, the problem of the construction of the general form of linear and nonlinear operator equations in distributions is timely. Another problem is related to the proper determination of solutions of equations that have nonlinear operations over generalized functions in their description. It is well-known that "the value of a distribution at a point" has no meaning. As a result the problem to construct the concept of stability for generalized processes arises. Finally, optimization problems for dynamic systems in distributions need finding optimality conditions. This book contains results that we have obtained in the above-mentioned directions. The aim of the book is to provide for electrical and mechanical engineers or mathematicians working in applications, a general and systematic treatment of dynamic systems based on up-to-date mathematical methods and to demonstrate the power of these methods in solving dynamics of systems and applied control problems | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Computer aided design | |
650 | 4 | |a Differential Equations | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Vibration | |
650 | 4 | |a Ordinary Differential Equations | |
650 | 4 | |a Calculus of Variations and Optimal Control; Optimization | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Computer-Aided Engineering (CAD, CAE) and Design | |
650 | 4 | |a Vibration, Dynamical Systems, Control | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Optimierung |0 (DE-588)4043664-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dynamisches System |0 (DE-588)4013396-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Dynamisches System |0 (DE-588)4013396-5 |D s |
689 | 0 | 1 | |a Optimierung |0 (DE-588)4043664-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Dynamisches System |0 (DE-588)4013396-5 |D s |
689 | 1 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Sesekin, A. N. |e Sonstige |4 oth | |
830 | 0 | |a Mathematics and Its Applications |v 394 |w (DE-604)BV008163334 |9 394 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-015-8893-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859516 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153100625248256 |
---|---|
any_adam_object | |
author | Zavalishchin, S. T. |
author_facet | Zavalishchin, S. T. |
author_role | aut |
author_sort | Zavalishchin, S. T. |
author_variant | s t z st stz |
building | Verbundindex |
bvnumber | BV042424099 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184502044 (DE-599)BVBBV042424099 |
dewey-full | 515.352 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.352 |
dewey-search | 515.352 |
dewey-sort | 3515.352 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-015-8893-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03995nmm a2200649zcb4500</leader><controlfield tag="001">BV042424099</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171009 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401588935</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-015-8893-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048147908</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-4790-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-015-8893-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184502044</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424099</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.352</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zavalishchin, S. T.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamic Impulse Systems</subfield><subfield code="b">Theory and Applications</subfield><subfield code="c">by S. T. Zavalishchin, A. N. Sesekin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 260 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">394</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">A number of optimization problems of the mechanics of space flight and the motion of walking robots and manipulators, and of quantum physics, economomics and biology, have an irregular structure: classical variational procedures do not formally make it possible to find optimal controls that, as we explain, have an impulse character. This and other well-known facts lead to the necessity for constructing dynamical models using the concept of a gener alized function (Schwartz distribution). The problem of the systematization of such models is very important. In particular, the problem of the construction of the general form of linear and nonlinear operator equations in distributions is timely. Another problem is related to the proper determination of solutions of equations that have nonlinear operations over generalized functions in their description. It is well-known that "the value of a distribution at a point" has no meaning. As a result the problem to construct the concept of stability for generalized processes arises. Finally, optimization problems for dynamic systems in distributions need finding optimality conditions. This book contains results that we have obtained in the above-mentioned directions. The aim of the book is to provide for electrical and mechanical engineers or mathematicians working in applications, a general and systematic treatment of dynamic systems based on up-to-date mathematical methods and to demonstrate the power of these methods in solving dynamics of systems and applied control problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer aided design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vibration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordinary Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer-Aided Engineering (CAD, CAE) and Design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vibration, Dynamical Systems, Control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sesekin, A. N.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">394</subfield><subfield code="w">(DE-604)BV008163334</subfield><subfield code="9">394</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-015-8893-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859516</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042424099 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:14Z |
institution | BVB |
isbn | 9789401588935 9789048147908 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859516 |
oclc_num | 1184502044 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XI, 260 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Springer Netherlands |
record_format | marc |
series | Mathematics and Its Applications |
series2 | Mathematics and Its Applications |
spelling | Zavalishchin, S. T. Verfasser aut Dynamic Impulse Systems Theory and Applications by S. T. Zavalishchin, A. N. Sesekin Dordrecht Springer Netherlands 1997 1 Online-Ressource (XI, 260 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 394 A number of optimization problems of the mechanics of space flight and the motion of walking robots and manipulators, and of quantum physics, economomics and biology, have an irregular structure: classical variational procedures do not formally make it possible to find optimal controls that, as we explain, have an impulse character. This and other well-known facts lead to the necessity for constructing dynamical models using the concept of a gener alized function (Schwartz distribution). The problem of the systematization of such models is very important. In particular, the problem of the construction of the general form of linear and nonlinear operator equations in distributions is timely. Another problem is related to the proper determination of solutions of equations that have nonlinear operations over generalized functions in their description. It is well-known that "the value of a distribution at a point" has no meaning. As a result the problem to construct the concept of stability for generalized processes arises. Finally, optimization problems for dynamic systems in distributions need finding optimality conditions. This book contains results that we have obtained in the above-mentioned directions. The aim of the book is to provide for electrical and mechanical engineers or mathematicians working in applications, a general and systematic treatment of dynamic systems based on up-to-date mathematical methods and to demonstrate the power of these methods in solving dynamics of systems and applied control problems Mathematics Computer aided design Differential Equations Mathematical optimization Vibration Ordinary Differential Equations Calculus of Variations and Optimal Control; Optimization Applications of Mathematics Computer-Aided Engineering (CAD, CAE) and Design Vibration, Dynamical Systems, Control Mathematik Optimierung (DE-588)4043664-0 gnd rswk-swf Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Dynamisches System (DE-588)4013396-5 gnd rswk-swf Dynamisches System (DE-588)4013396-5 s Optimierung (DE-588)4043664-0 s 1\p DE-604 Numerisches Verfahren (DE-588)4128130-5 s 2\p DE-604 Sesekin, A. N. Sonstige oth Mathematics and Its Applications 394 (DE-604)BV008163334 394 https://doi.org/10.1007/978-94-015-8893-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Zavalishchin, S. T. Dynamic Impulse Systems Theory and Applications Mathematics and Its Applications Mathematics Computer aided design Differential Equations Mathematical optimization Vibration Ordinary Differential Equations Calculus of Variations and Optimal Control; Optimization Applications of Mathematics Computer-Aided Engineering (CAD, CAE) and Design Vibration, Dynamical Systems, Control Mathematik Optimierung (DE-588)4043664-0 gnd Numerisches Verfahren (DE-588)4128130-5 gnd Dynamisches System (DE-588)4013396-5 gnd |
subject_GND | (DE-588)4043664-0 (DE-588)4128130-5 (DE-588)4013396-5 |
title | Dynamic Impulse Systems Theory and Applications |
title_auth | Dynamic Impulse Systems Theory and Applications |
title_exact_search | Dynamic Impulse Systems Theory and Applications |
title_full | Dynamic Impulse Systems Theory and Applications by S. T. Zavalishchin, A. N. Sesekin |
title_fullStr | Dynamic Impulse Systems Theory and Applications by S. T. Zavalishchin, A. N. Sesekin |
title_full_unstemmed | Dynamic Impulse Systems Theory and Applications by S. T. Zavalishchin, A. N. Sesekin |
title_short | Dynamic Impulse Systems |
title_sort | dynamic impulse systems theory and applications |
title_sub | Theory and Applications |
topic | Mathematics Computer aided design Differential Equations Mathematical optimization Vibration Ordinary Differential Equations Calculus of Variations and Optimal Control; Optimization Applications of Mathematics Computer-Aided Engineering (CAD, CAE) and Design Vibration, Dynamical Systems, Control Mathematik Optimierung (DE-588)4043664-0 gnd Numerisches Verfahren (DE-588)4128130-5 gnd Dynamisches System (DE-588)4013396-5 gnd |
topic_facet | Mathematics Computer aided design Differential Equations Mathematical optimization Vibration Ordinary Differential Equations Calculus of Variations and Optimal Control; Optimization Applications of Mathematics Computer-Aided Engineering (CAD, CAE) and Design Vibration, Dynamical Systems, Control Mathematik Optimierung Numerisches Verfahren Dynamisches System |
url | https://doi.org/10.1007/978-94-015-8893-5 |
volume_link | (DE-604)BV008163334 |
work_keys_str_mv | AT zavalishchinst dynamicimpulsesystemstheoryandapplications AT sesekinan dynamicimpulsesystemstheoryandapplications |