Nonlinear Wave Dynamics: Complexity and Simplicity
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1997
|
Schriftenreihe: | Kluwer Texts in the Mathematical Sciences
17 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | At the end of the twentieth century, nonlinear dynamics turned out to be one of the most challenging and stimulating ideas. Notions like bifurcations, attractors, chaos, fractals, etc. have proved to be useful in explaining the world around us, be it natural or artificial. However, much of our everyday understanding is still based on linearity, i. e. on the additivity and the proportionality. The larger the excitation, the larger the response-this seems to be carved in a stone tablet. The real world is not always reacting this way and the additivity is simply lost. The most convenient way to describe such a phenomenon is to use a mathematical term-nonlinearity. The importance of this notion, i. e. the importance of being nonlinear is nowadays more and more accepted not only by the scientific community but also globally. The recent success of nonlinear dynamics is heavily biased towards temporal characterization widely using nonlinear ordinary differential equations. Nonlinear spatio-temporal processes, i. e. nonlinear waves are seemingly much more complicated because they are described by nonlinear partial differential equations. The richness of the world may lead in this case to coherent structures like solitons, kinks, breathers, etc. which have been studied in detail. Their chaotic counterparts, however, are not so explicitly analysed yet. The wavebearing physical systems cover a wide range of phenomena involving physics, solid mechanics, hydrodynamics, biological structures, chemistry, etc |
Beschreibung: | 1 Online-Ressource (XIV, 185 p) |
ISBN: | 9789401588911 9789048148332 |
ISSN: | 0927-4529 |
DOI: | 10.1007/978-94-015-8891-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042424098 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1997 |||| o||u| ||||||eng d | ||
020 | |a 9789401588911 |c Online |9 978-94-015-8891-1 | ||
020 | |a 9789048148332 |c Print |9 978-90-481-4833-2 | ||
024 | 7 | |a 10.1007/978-94-015-8891-1 |2 doi | |
035 | |a (OCoLC)864061675 | ||
035 | |a (DE-599)BVBBV042424098 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 620 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Engelbrecht, Jüri |e Verfasser |4 aut | |
245 | 1 | 0 | |a Nonlinear Wave Dynamics |b Complexity and Simplicity |c by Jüri Engelbrecht |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1997 | |
300 | |a 1 Online-Ressource (XIV, 185 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Kluwer Texts in the Mathematical Sciences |v 17 |x 0927-4529 | |
500 | |a At the end of the twentieth century, nonlinear dynamics turned out to be one of the most challenging and stimulating ideas. Notions like bifurcations, attractors, chaos, fractals, etc. have proved to be useful in explaining the world around us, be it natural or artificial. However, much of our everyday understanding is still based on linearity, i. e. on the additivity and the proportionality. The larger the excitation, the larger the response-this seems to be carved in a stone tablet. The real world is not always reacting this way and the additivity is simply lost. The most convenient way to describe such a phenomenon is to use a mathematical term-nonlinearity. The importance of this notion, i. e. the importance of being nonlinear is nowadays more and more accepted not only by the scientific community but also globally. The recent success of nonlinear dynamics is heavily biased towards temporal characterization widely using nonlinear ordinary differential equations. Nonlinear spatio-temporal processes, i. e. nonlinear waves are seemingly much more complicated because they are described by nonlinear partial differential equations. The richness of the world may lead in this case to coherent structures like solitons, kinks, breathers, etc. which have been studied in detail. Their chaotic counterparts, however, are not so explicitly analysed yet. The wavebearing physical systems cover a wide range of phenomena involving physics, solid mechanics, hydrodynamics, biological structures, chemistry, etc | ||
650 | 4 | |a Engineering | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Materials | |
650 | 4 | |a Vibration | |
650 | 4 | |a Vibration, Dynamical Systems, Control | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Continuum Mechanics and Mechanics of Materials | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Ingenieurwissenschaften | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Wellenbewegung |0 (DE-588)4467376-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Welle |0 (DE-588)4042102-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlineare Welle |0 (DE-588)4042102-8 |D s |
689 | 0 | 1 | |a Wellenbewegung |0 (DE-588)4467376-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-015-8891-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859515 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153100621053952 |
---|---|
any_adam_object | |
author | Engelbrecht, Jüri |
author_facet | Engelbrecht, Jüri |
author_role | aut |
author_sort | Engelbrecht, Jüri |
author_variant | j e je |
building | Verbundindex |
bvnumber | BV042424098 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)864061675 (DE-599)BVBBV042424098 |
dewey-full | 620 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620 |
dewey-search | 620 |
dewey-sort | 3620 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-015-8891-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03494nmm a2200565zcb4500</leader><controlfield tag="001">BV042424098</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401588911</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-015-8891-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048148332</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-4833-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-015-8891-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864061675</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424098</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Engelbrecht, Jüri</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear Wave Dynamics</subfield><subfield code="b">Complexity and Simplicity</subfield><subfield code="c">by Jüri Engelbrecht</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 185 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Kluwer Texts in the Mathematical Sciences</subfield><subfield code="v">17</subfield><subfield code="x">0927-4529</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">At the end of the twentieth century, nonlinear dynamics turned out to be one of the most challenging and stimulating ideas. Notions like bifurcations, attractors, chaos, fractals, etc. have proved to be useful in explaining the world around us, be it natural or artificial. However, much of our everyday understanding is still based on linearity, i. e. on the additivity and the proportionality. The larger the excitation, the larger the response-this seems to be carved in a stone tablet. The real world is not always reacting this way and the additivity is simply lost. The most convenient way to describe such a phenomenon is to use a mathematical term-nonlinearity. The importance of this notion, i. e. the importance of being nonlinear is nowadays more and more accepted not only by the scientific community but also globally. The recent success of nonlinear dynamics is heavily biased towards temporal characterization widely using nonlinear ordinary differential equations. Nonlinear spatio-temporal processes, i. e. nonlinear waves are seemingly much more complicated because they are described by nonlinear partial differential equations. The richness of the world may lead in this case to coherent structures like solitons, kinks, breathers, etc. which have been studied in detail. Their chaotic counterparts, however, are not so explicitly analysed yet. The wavebearing physical systems cover a wide range of phenomena involving physics, solid mechanics, hydrodynamics, biological structures, chemistry, etc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vibration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vibration, Dynamical Systems, Control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuum Mechanics and Mechanics of Materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wellenbewegung</subfield><subfield code="0">(DE-588)4467376-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Welle</subfield><subfield code="0">(DE-588)4042102-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare Welle</subfield><subfield code="0">(DE-588)4042102-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Wellenbewegung</subfield><subfield code="0">(DE-588)4467376-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-015-8891-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859515</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042424098 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:14Z |
institution | BVB |
isbn | 9789401588911 9789048148332 |
issn | 0927-4529 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859515 |
oclc_num | 864061675 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIV, 185 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Kluwer Texts in the Mathematical Sciences |
spelling | Engelbrecht, Jüri Verfasser aut Nonlinear Wave Dynamics Complexity and Simplicity by Jüri Engelbrecht Dordrecht Springer Netherlands 1997 1 Online-Ressource (XIV, 185 p) txt rdacontent c rdamedia cr rdacarrier Kluwer Texts in the Mathematical Sciences 17 0927-4529 At the end of the twentieth century, nonlinear dynamics turned out to be one of the most challenging and stimulating ideas. Notions like bifurcations, attractors, chaos, fractals, etc. have proved to be useful in explaining the world around us, be it natural or artificial. However, much of our everyday understanding is still based on linearity, i. e. on the additivity and the proportionality. The larger the excitation, the larger the response-this seems to be carved in a stone tablet. The real world is not always reacting this way and the additivity is simply lost. The most convenient way to describe such a phenomenon is to use a mathematical term-nonlinearity. The importance of this notion, i. e. the importance of being nonlinear is nowadays more and more accepted not only by the scientific community but also globally. The recent success of nonlinear dynamics is heavily biased towards temporal characterization widely using nonlinear ordinary differential equations. Nonlinear spatio-temporal processes, i. e. nonlinear waves are seemingly much more complicated because they are described by nonlinear partial differential equations. The richness of the world may lead in this case to coherent structures like solitons, kinks, breathers, etc. which have been studied in detail. Their chaotic counterparts, however, are not so explicitly analysed yet. The wavebearing physical systems cover a wide range of phenomena involving physics, solid mechanics, hydrodynamics, biological structures, chemistry, etc Engineering Differential equations, partial Mathematics Materials Vibration Vibration, Dynamical Systems, Control Partial Differential Equations Continuum Mechanics and Mechanics of Materials Applications of Mathematics Ingenieurwissenschaften Mathematik Wellenbewegung (DE-588)4467376-0 gnd rswk-swf Nichtlineare Welle (DE-588)4042102-8 gnd rswk-swf Nichtlineare Welle (DE-588)4042102-8 s Wellenbewegung (DE-588)4467376-0 s 1\p DE-604 https://doi.org/10.1007/978-94-015-8891-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Engelbrecht, Jüri Nonlinear Wave Dynamics Complexity and Simplicity Engineering Differential equations, partial Mathematics Materials Vibration Vibration, Dynamical Systems, Control Partial Differential Equations Continuum Mechanics and Mechanics of Materials Applications of Mathematics Ingenieurwissenschaften Mathematik Wellenbewegung (DE-588)4467376-0 gnd Nichtlineare Welle (DE-588)4042102-8 gnd |
subject_GND | (DE-588)4467376-0 (DE-588)4042102-8 |
title | Nonlinear Wave Dynamics Complexity and Simplicity |
title_auth | Nonlinear Wave Dynamics Complexity and Simplicity |
title_exact_search | Nonlinear Wave Dynamics Complexity and Simplicity |
title_full | Nonlinear Wave Dynamics Complexity and Simplicity by Jüri Engelbrecht |
title_fullStr | Nonlinear Wave Dynamics Complexity and Simplicity by Jüri Engelbrecht |
title_full_unstemmed | Nonlinear Wave Dynamics Complexity and Simplicity by Jüri Engelbrecht |
title_short | Nonlinear Wave Dynamics |
title_sort | nonlinear wave dynamics complexity and simplicity |
title_sub | Complexity and Simplicity |
topic | Engineering Differential equations, partial Mathematics Materials Vibration Vibration, Dynamical Systems, Control Partial Differential Equations Continuum Mechanics and Mechanics of Materials Applications of Mathematics Ingenieurwissenschaften Mathematik Wellenbewegung (DE-588)4467376-0 gnd Nichtlineare Welle (DE-588)4042102-8 gnd |
topic_facet | Engineering Differential equations, partial Mathematics Materials Vibration Vibration, Dynamical Systems, Control Partial Differential Equations Continuum Mechanics and Mechanics of Materials Applications of Mathematics Ingenieurwissenschaften Mathematik Wellenbewegung Nichtlineare Welle |
url | https://doi.org/10.1007/978-94-015-8891-1 |
work_keys_str_mv | AT engelbrechtjuri nonlinearwavedynamicscomplexityandsimplicity |