Asymptotic Theory of Nonlinear Regression:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1997
|
Schriftenreihe: | Mathematics and Its Applications
389 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Let us assume that an observation Xi is a random variable (r.v.) with values in 1 1 (1R1 , 8 ) and distribution Pi (1R1 is the real line, and 8 is the cr-algebra of its Borel subsets). Let us also assume that the unknown distribution Pi belongs to a 1 certain parametric family {Pi() , () E e}. We call the triple £i = {1R1 , 8 , Pi(), () E e} a statistical experiment generated by the observation Xi. n We shall say that a statistical experiment £n = {lRn, 8 , P; ,() E e} is the product of the statistical experiments £i, i = 1, ... ,n if PO' = P () X ... X P () (IRn 1 n n is the n-dimensional Euclidean space, and 8 is the cr-algebra of its Borel subsets). In this manner the experiment £n is generated by n independent observations X = (X1, ... ,Xn). In this book we study the statistical experiments £n generated by observations of the form j = 1, ... ,n. (0.1) Xj = g(j, (}) + cj, c c In (0.1) g(j, (}) is a non-random function defined on e , where e is the closure in IRq of the open set e ~ IRq, and C j are independent r. v .-s with common distribution function (dJ.) P not depending on () |
Beschreibung: | 1 Online-Ressource (VI, 330 p) |
ISBN: | 9789401588775 9789048147755 |
DOI: | 10.1007/978-94-015-8877-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042424096 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1997 |||| o||u| ||||||eng d | ||
020 | |a 9789401588775 |c Online |9 978-94-015-8877-5 | ||
020 | |a 9789048147755 |c Print |9 978-90-481-4775-5 | ||
024 | 7 | |a 10.1007/978-94-015-8877-5 |2 doi | |
035 | |a (OCoLC)1165550901 | ||
035 | |a (DE-599)BVBBV042424096 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.5 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Ivanov, Alexander V. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Asymptotic Theory of Nonlinear Regression |c by Alexander V. Ivanov |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1997 | |
300 | |a 1 Online-Ressource (VI, 330 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and Its Applications |v 389 | |
500 | |a Let us assume that an observation Xi is a random variable (r.v.) with values in 1 1 (1R1 , 8 ) and distribution Pi (1R1 is the real line, and 8 is the cr-algebra of its Borel subsets). Let us also assume that the unknown distribution Pi belongs to a 1 certain parametric family {Pi() , () E e}. We call the triple £i = {1R1 , 8 , Pi(), () E e} a statistical experiment generated by the observation Xi. n We shall say that a statistical experiment £n = {lRn, 8 , P; ,() E e} is the product of the statistical experiments £i, i = 1, ... ,n if PO' = P () X ... X P () (IRn 1 n n is the n-dimensional Euclidean space, and 8 is the cr-algebra of its Borel subsets). In this manner the experiment £n is generated by n independent observations X = (X1, ... ,Xn). In this book we study the statistical experiments £n generated by observations of the form j = 1, ... ,n. (0.1) Xj = g(j, (}) + cj, c c In (0.1) g(j, (}) is a non-random function defined on e , where e is the closure in IRq of the open set e ~ IRq, and C j are independent r. v .-s with common distribution function (dJ.) P not depending on () | ||
650 | 4 | |a Statistics | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Systems theory | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Statistics, general | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Mathematical Modeling and Industrial Mathematics | |
650 | 4 | |a Systems Theory, Control | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Statistik | |
650 | 0 | 7 | |a Asymptotik |0 (DE-588)4126634-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Regression |0 (DE-588)4251077-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlineare Regression |0 (DE-588)4251077-6 |D s |
689 | 0 | 1 | |a Asymptotik |0 (DE-588)4126634-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-015-8877-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859513 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153100620005376 |
---|---|
any_adam_object | |
author | Ivanov, Alexander V. |
author_facet | Ivanov, Alexander V. |
author_role | aut |
author_sort | Ivanov, Alexander V. |
author_variant | a v i av avi |
building | Verbundindex |
bvnumber | BV042424096 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165550901 (DE-599)BVBBV042424096 |
dewey-full | 519.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5 |
dewey-search | 519.5 |
dewey-sort | 3519.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-015-8877-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03063nmm a2200565zcb4500</leader><controlfield tag="001">BV042424096</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401588775</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-015-8877-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048147755</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-4775-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-015-8877-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165550901</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424096</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ivanov, Alexander V.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Asymptotic Theory of Nonlinear Regression</subfield><subfield code="c">by Alexander V. Ivanov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VI, 330 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">389</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Let us assume that an observation Xi is a random variable (r.v.) with values in 1 1 (1R1 , 8 ) and distribution Pi (1R1 is the real line, and 8 is the cr-algebra of its Borel subsets). Let us also assume that the unknown distribution Pi belongs to a 1 certain parametric family {Pi() , () E e}. We call the triple £i = {1R1 , 8 , Pi(), () E e} a statistical experiment generated by the observation Xi. n We shall say that a statistical experiment £n = {lRn, 8 , P; ,() E e} is the product of the statistical experiments £i, i = 1, ... ,n if PO' = P () X ... X P () (IRn 1 n n is the n-dimensional Euclidean space, and 8 is the cr-algebra of its Borel subsets). In this manner the experiment £n is generated by n independent observations X = (X1, ... ,Xn). In this book we study the statistical experiments £n generated by observations of the form j = 1, ... ,n. (0.1) Xj = g(j, (}) + cj, c c In (0.1) g(j, (}) is a non-random function defined on e , where e is the closure in IRq of the open set e ~ IRq, and C j are independent r. v .-s with common distribution function (dJ.) P not depending on ()</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Modeling and Industrial Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems Theory, Control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Asymptotik</subfield><subfield code="0">(DE-588)4126634-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Regression</subfield><subfield code="0">(DE-588)4251077-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare Regression</subfield><subfield code="0">(DE-588)4251077-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Asymptotik</subfield><subfield code="0">(DE-588)4126634-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-015-8877-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859513</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042424096 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:14Z |
institution | BVB |
isbn | 9789401588775 9789048147755 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859513 |
oclc_num | 1165550901 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VI, 330 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Mathematics and Its Applications |
spelling | Ivanov, Alexander V. Verfasser aut Asymptotic Theory of Nonlinear Regression by Alexander V. Ivanov Dordrecht Springer Netherlands 1997 1 Online-Ressource (VI, 330 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 389 Let us assume that an observation Xi is a random variable (r.v.) with values in 1 1 (1R1 , 8 ) and distribution Pi (1R1 is the real line, and 8 is the cr-algebra of its Borel subsets). Let us also assume that the unknown distribution Pi belongs to a 1 certain parametric family {Pi() , () E e}. We call the triple £i = {1R1 , 8 , Pi(), () E e} a statistical experiment generated by the observation Xi. n We shall say that a statistical experiment £n = {lRn, 8 , P; ,() E e} is the product of the statistical experiments £i, i = 1, ... ,n if PO' = P () X ... X P () (IRn 1 n n is the n-dimensional Euclidean space, and 8 is the cr-algebra of its Borel subsets). In this manner the experiment £n is generated by n independent observations X = (X1, ... ,Xn). In this book we study the statistical experiments £n generated by observations of the form j = 1, ... ,n. (0.1) Xj = g(j, (}) + cj, c c In (0.1) g(j, (}) is a non-random function defined on e , where e is the closure in IRq of the open set e ~ IRq, and C j are independent r. v .-s with common distribution function (dJ.) P not depending on () Statistics Mathematics Systems theory Distribution (Probability theory) Statistics, general Probability Theory and Stochastic Processes Applications of Mathematics Mathematical Modeling and Industrial Mathematics Systems Theory, Control Mathematik Statistik Asymptotik (DE-588)4126634-1 gnd rswk-swf Nichtlineare Regression (DE-588)4251077-6 gnd rswk-swf Nichtlineare Regression (DE-588)4251077-6 s Asymptotik (DE-588)4126634-1 s 1\p DE-604 https://doi.org/10.1007/978-94-015-8877-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Ivanov, Alexander V. Asymptotic Theory of Nonlinear Regression Statistics Mathematics Systems theory Distribution (Probability theory) Statistics, general Probability Theory and Stochastic Processes Applications of Mathematics Mathematical Modeling and Industrial Mathematics Systems Theory, Control Mathematik Statistik Asymptotik (DE-588)4126634-1 gnd Nichtlineare Regression (DE-588)4251077-6 gnd |
subject_GND | (DE-588)4126634-1 (DE-588)4251077-6 |
title | Asymptotic Theory of Nonlinear Regression |
title_auth | Asymptotic Theory of Nonlinear Regression |
title_exact_search | Asymptotic Theory of Nonlinear Regression |
title_full | Asymptotic Theory of Nonlinear Regression by Alexander V. Ivanov |
title_fullStr | Asymptotic Theory of Nonlinear Regression by Alexander V. Ivanov |
title_full_unstemmed | Asymptotic Theory of Nonlinear Regression by Alexander V. Ivanov |
title_short | Asymptotic Theory of Nonlinear Regression |
title_sort | asymptotic theory of nonlinear regression |
topic | Statistics Mathematics Systems theory Distribution (Probability theory) Statistics, general Probability Theory and Stochastic Processes Applications of Mathematics Mathematical Modeling and Industrial Mathematics Systems Theory, Control Mathematik Statistik Asymptotik (DE-588)4126634-1 gnd Nichtlineare Regression (DE-588)4251077-6 gnd |
topic_facet | Statistics Mathematics Systems theory Distribution (Probability theory) Statistics, general Probability Theory and Stochastic Processes Applications of Mathematics Mathematical Modeling and Industrial Mathematics Systems Theory, Control Mathematik Statistik Asymptotik Nichtlineare Regression |
url | https://doi.org/10.1007/978-94-015-8877-5 |
work_keys_str_mv | AT ivanovalexanderv asymptotictheoryofnonlinearregression |