Conformal Quantum Field Theory in D-dimensions:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1996
|
Schriftenreihe: | Mathematics and Its Applications
376 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Our prime concern in this book is to discuss some most interesting prosppcts that have occurred recently in conformally invariant quantum field theory in a D-diuwnsional space. One of the most promising trends is constructing an pxact solution for a cprtain class of models. This task seems to be quite feasible in the light of recent resllits. The situation here is to some extent similar to what was going on in the past ypars with the two-dimensional quantum field theory. Our investigation of conformal Ward identities in a D-dimensional space, carried out as far hack as the late H. J7Gs, showed that in the D-dimensional quantum field theory, irrespective of the type of interartion, there exists a special set of states of the field with the following property: if we rpqllire that one of these states should vanish, this determines an exact solution of 3. certain field model. These states are analogous to null-vectors which determine the minimal models in the two-dimensional field theory. On the other hand, the recent resparches supplied us with a number of indications on the existencp of an intinite-parampter algebra analogous to the Virasoro algebra in spaces of higher dimensions D 2: :~. It has also been shown that this algebra admits an operator rentral expansion. It seems to us that the above-mentioned models are field theoretical realizations of the representations of these new symmetries for D 2: ;3 |
Beschreibung: | 1 Online-Ressource (XII, 466 p) |
ISBN: | 9789401587570 9789048147328 |
DOI: | 10.1007/978-94-015-8757-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042424085 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1996 |||| o||u| ||||||eng d | ||
020 | |a 9789401587570 |c Online |9 978-94-015-8757-0 | ||
020 | |a 9789048147328 |c Print |9 978-90-481-4732-8 | ||
024 | 7 | |a 10.1007/978-94-015-8757-0 |2 doi | |
035 | |a (OCoLC)1165485960 | ||
035 | |a (DE-599)BVBBV042424085 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 539.72 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Fradkin, Efim S. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Conformal Quantum Field Theory in D-dimensions |c by Efim S. Fradkin, Mark Ya. Palchik |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1996 | |
300 | |a 1 Online-Ressource (XII, 466 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and Its Applications |v 376 | |
500 | |a Our prime concern in this book is to discuss some most interesting prosppcts that have occurred recently in conformally invariant quantum field theory in a D-diuwnsional space. One of the most promising trends is constructing an pxact solution for a cprtain class of models. This task seems to be quite feasible in the light of recent resllits. The situation here is to some extent similar to what was going on in the past ypars with the two-dimensional quantum field theory. Our investigation of conformal Ward identities in a D-dimensional space, carried out as far hack as the late H. J7Gs, showed that in the D-dimensional quantum field theory, irrespective of the type of interartion, there exists a special set of states of the field with the following property: if we rpqllire that one of these states should vanish, this determines an exact solution of 3. certain field model. These states are analogous to null-vectors which determine the minimal models in the two-dimensional field theory. On the other hand, the recent resparches supplied us with a number of indications on the existencp of an intinite-parampter algebra analogous to the Virasoro algebra in spaces of higher dimensions D 2: :~. It has also been shown that this algebra admits an operator rentral expansion. It seems to us that the above-mentioned models are field theoretical realizations of the representations of these new symmetries for D 2: ;3 | ||
650 | 4 | |a Physics | |
650 | 4 | |a Topological Groups | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Elementary Particles, Quantum Field Theory | |
650 | 4 | |a Topological Groups, Lie Groups | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Quantentheorie | |
650 | 0 | 7 | |a Konforme Feldtheorie |0 (DE-588)4312574-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |D s |
689 | 0 | 1 | |a Konforme Feldtheorie |0 (DE-588)4312574-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Palchik, Mark Ya |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-015-8757-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859502 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153100595888128 |
---|---|
any_adam_object | |
author | Fradkin, Efim S. |
author_facet | Fradkin, Efim S. |
author_role | aut |
author_sort | Fradkin, Efim S. |
author_variant | e s f es esf |
building | Verbundindex |
bvnumber | BV042424085 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165485960 (DE-599)BVBBV042424085 |
dewey-full | 539.72 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 539 - Modern physics |
dewey-raw | 539.72 |
dewey-search | 539.72 |
dewey-sort | 3539.72 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
doi_str_mv | 10.1007/978-94-015-8757-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03351nmm a2200553zcb4500</leader><controlfield tag="001">BV042424085</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401587570</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-015-8757-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048147328</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-4732-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-015-8757-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165485960</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424085</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">539.72</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fradkin, Efim S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Conformal Quantum Field Theory in D-dimensions</subfield><subfield code="c">by Efim S. Fradkin, Mark Ya. Palchik</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 466 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">376</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Our prime concern in this book is to discuss some most interesting prosppcts that have occurred recently in conformally invariant quantum field theory in a D-diuwnsional space. One of the most promising trends is constructing an pxact solution for a cprtain class of models. This task seems to be quite feasible in the light of recent resllits. The situation here is to some extent similar to what was going on in the past ypars with the two-dimensional quantum field theory. Our investigation of conformal Ward identities in a D-dimensional space, carried out as far hack as the late H. J7Gs, showed that in the D-dimensional quantum field theory, irrespective of the type of interartion, there exists a special set of states of the field with the following property: if we rpqllire that one of these states should vanish, this determines an exact solution of 3. certain field model. These states are analogous to null-vectors which determine the minimal models in the two-dimensional field theory. On the other hand, the recent resparches supplied us with a number of indications on the existencp of an intinite-parampter algebra analogous to the Virasoro algebra in spaces of higher dimensions D 2: :~. It has also been shown that this algebra admits an operator rentral expansion. It seems to us that the above-mentioned models are field theoretical realizations of the representations of these new symmetries for D 2: ;3</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elementary Particles, Quantum Field Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konforme Feldtheorie</subfield><subfield code="0">(DE-588)4312574-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Konforme Feldtheorie</subfield><subfield code="0">(DE-588)4312574-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Palchik, Mark Ya</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-015-8757-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859502</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042424085 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:14Z |
institution | BVB |
isbn | 9789401587570 9789048147328 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859502 |
oclc_num | 1165485960 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 466 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Mathematics and Its Applications |
spelling | Fradkin, Efim S. Verfasser aut Conformal Quantum Field Theory in D-dimensions by Efim S. Fradkin, Mark Ya. Palchik Dordrecht Springer Netherlands 1996 1 Online-Ressource (XII, 466 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 376 Our prime concern in this book is to discuss some most interesting prosppcts that have occurred recently in conformally invariant quantum field theory in a D-diuwnsional space. One of the most promising trends is constructing an pxact solution for a cprtain class of models. This task seems to be quite feasible in the light of recent resllits. The situation here is to some extent similar to what was going on in the past ypars with the two-dimensional quantum field theory. Our investigation of conformal Ward identities in a D-dimensional space, carried out as far hack as the late H. J7Gs, showed that in the D-dimensional quantum field theory, irrespective of the type of interartion, there exists a special set of states of the field with the following property: if we rpqllire that one of these states should vanish, this determines an exact solution of 3. certain field model. These states are analogous to null-vectors which determine the minimal models in the two-dimensional field theory. On the other hand, the recent resparches supplied us with a number of indications on the existencp of an intinite-parampter algebra analogous to the Virasoro algebra in spaces of higher dimensions D 2: :~. It has also been shown that this algebra admits an operator rentral expansion. It seems to us that the above-mentioned models are field theoretical realizations of the representations of these new symmetries for D 2: ;3 Physics Topological Groups Mathematics Quantum theory Elementary Particles, Quantum Field Theory Topological Groups, Lie Groups Applications of Mathematics Mathematik Quantentheorie Konforme Feldtheorie (DE-588)4312574-8 gnd rswk-swf Quantenfeldtheorie (DE-588)4047984-5 gnd rswk-swf Quantenfeldtheorie (DE-588)4047984-5 s Konforme Feldtheorie (DE-588)4312574-8 s 1\p DE-604 Palchik, Mark Ya Sonstige oth https://doi.org/10.1007/978-94-015-8757-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Fradkin, Efim S. Conformal Quantum Field Theory in D-dimensions Physics Topological Groups Mathematics Quantum theory Elementary Particles, Quantum Field Theory Topological Groups, Lie Groups Applications of Mathematics Mathematik Quantentheorie Konforme Feldtheorie (DE-588)4312574-8 gnd Quantenfeldtheorie (DE-588)4047984-5 gnd |
subject_GND | (DE-588)4312574-8 (DE-588)4047984-5 |
title | Conformal Quantum Field Theory in D-dimensions |
title_auth | Conformal Quantum Field Theory in D-dimensions |
title_exact_search | Conformal Quantum Field Theory in D-dimensions |
title_full | Conformal Quantum Field Theory in D-dimensions by Efim S. Fradkin, Mark Ya. Palchik |
title_fullStr | Conformal Quantum Field Theory in D-dimensions by Efim S. Fradkin, Mark Ya. Palchik |
title_full_unstemmed | Conformal Quantum Field Theory in D-dimensions by Efim S. Fradkin, Mark Ya. Palchik |
title_short | Conformal Quantum Field Theory in D-dimensions |
title_sort | conformal quantum field theory in d dimensions |
topic | Physics Topological Groups Mathematics Quantum theory Elementary Particles, Quantum Field Theory Topological Groups, Lie Groups Applications of Mathematics Mathematik Quantentheorie Konforme Feldtheorie (DE-588)4312574-8 gnd Quantenfeldtheorie (DE-588)4047984-5 gnd |
topic_facet | Physics Topological Groups Mathematics Quantum theory Elementary Particles, Quantum Field Theory Topological Groups, Lie Groups Applications of Mathematics Mathematik Quantentheorie Konforme Feldtheorie Quantenfeldtheorie |
url | https://doi.org/10.1007/978-94-015-8757-0 |
work_keys_str_mv | AT fradkinefims conformalquantumfieldtheoryinddimensions AT palchikmarkya conformalquantumfieldtheoryinddimensions |