Evolution Processes and the Feynman-Kac Formula:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1996
|
Schriftenreihe: | Mathematics and Its Applications
353 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book is an outgrowth of ideas originating from 1. Kluvanek. Unfortunately, Professor Kluvanek did not live to contribute to the project of writing up in a systematic form, the circle of ideas to which the present work is devoted. It is more than likely that with his input, the approach and areas of emphasis of the resulting exposition would have been quite different from what we have here. Nevertheless, the stamp of Kluvanek's thought and philosophy (but not necessarily his approval) abounds throughout this book. Although the title gives no indication, integration theory in vector spaces is a central topic of this work. However, the various notions of integration developed here are intimately connected with a specific application- the representation of evolutions by functional integrals. The representation of a perturbation to the heat semigroup in terms of Wiener measure is known as the Feynman-Kac formula, but the term has a wider meaning in the present work. Traditionally, such representations have been used to obtain analytic information about perturbations to free evolutions as an alternative to arguments with a more operator-theoretic flavour. No applications of this type are given here. It is an underlying assumption of the presentation of this material that representations of the nature of the Feynman-Kac formula are worth obtaining, and in the process of obtaining them, we may be led to new, possibly fertile mathematical structures- a view largely motivated by the pervasive use of path integrals in quantum physics |
Beschreibung: | 1 Online-Ressource (X, 238 p) |
ISBN: | 9789401586603 9789048146505 |
DOI: | 10.1007/978-94-015-8660-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042424078 | ||
003 | DE-604 | ||
005 | 20180125 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1996 |||| o||u| ||||||eng d | ||
020 | |a 9789401586603 |c Online |9 978-94-015-8660-3 | ||
020 | |a 9789048146505 |c Print |9 978-90-481-4650-5 | ||
024 | 7 | |a 10.1007/978-94-015-8660-3 |2 doi | |
035 | |a (OCoLC)1184486281 | ||
035 | |a (DE-599)BVBBV042424078 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Jefferies, Brian |e Verfasser |4 aut | |
245 | 1 | 0 | |a Evolution Processes and the Feynman-Kac Formula |c by Brian Jefferies |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1996 | |
300 | |a 1 Online-Ressource (X, 238 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematics and Its Applications |v 353 | |
500 | |a This book is an outgrowth of ideas originating from 1. Kluvanek. Unfortunately, Professor Kluvanek did not live to contribute to the project of writing up in a systematic form, the circle of ideas to which the present work is devoted. It is more than likely that with his input, the approach and areas of emphasis of the resulting exposition would have been quite different from what we have here. Nevertheless, the stamp of Kluvanek's thought and philosophy (but not necessarily his approval) abounds throughout this book. Although the title gives no indication, integration theory in vector spaces is a central topic of this work. However, the various notions of integration developed here are intimately connected with a specific application- the representation of evolutions by functional integrals. The representation of a perturbation to the heat semigroup in terms of Wiener measure is known as the Feynman-Kac formula, but the term has a wider meaning in the present work. Traditionally, such representations have been used to obtain analytic information about perturbations to free evolutions as an alternative to arguments with a more operator-theoretic flavour. No applications of this type are given here. It is an underlying assumption of the presentation of this material that representations of the nature of the Feynman-Kac formula are worth obtaining, and in the process of obtaining them, we may be led to new, possibly fertile mathematical structures- a view largely motivated by the pervasive use of path integrals in quantum physics | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Operator theory | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Measure and Integration | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Operator Theory | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Nichtlineare Evolutionsgleichung |0 (DE-588)4221363-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Evolutionsgleichung |0 (DE-588)4129061-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dynamisches System |0 (DE-588)4013396-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Pfadintegral |0 (DE-588)4173973-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Dynamisches System |0 (DE-588)4013396-5 |D s |
689 | 0 | 1 | |a Nichtlineare Evolutionsgleichung |0 (DE-588)4221363-0 |D s |
689 | 0 | 2 | |a Pfadintegral |0 (DE-588)4173973-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Evolutionsgleichung |0 (DE-588)4129061-6 |D s |
689 | 1 | 1 | |a Pfadintegral |0 (DE-588)4173973-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
830 | 0 | |a Mathematics and Its Applications |v 353 |w (DE-604)BV008163334 |9 353 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-015-8660-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859495 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153100586450944 |
---|---|
any_adam_object | |
author | Jefferies, Brian |
author_facet | Jefferies, Brian |
author_role | aut |
author_sort | Jefferies, Brian |
author_variant | b j bj |
building | Verbundindex |
bvnumber | BV042424078 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184486281 (DE-599)BVBBV042424078 |
dewey-full | 519 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519 |
dewey-search | 519 |
dewey-sort | 3519 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-015-8660-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03979nmm a2200649zcb4500</leader><controlfield tag="001">BV042424078</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180125 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401586603</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-015-8660-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048146505</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-4650-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-015-8660-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184486281</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424078</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jefferies, Brian</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evolution Processes and the Feynman-Kac Formula</subfield><subfield code="c">by Brian Jefferies</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 238 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">353</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book is an outgrowth of ideas originating from 1. Kluvanek. Unfortunately, Professor Kluvanek did not live to contribute to the project of writing up in a systematic form, the circle of ideas to which the present work is devoted. It is more than likely that with his input, the approach and areas of emphasis of the resulting exposition would have been quite different from what we have here. Nevertheless, the stamp of Kluvanek's thought and philosophy (but not necessarily his approval) abounds throughout this book. Although the title gives no indication, integration theory in vector spaces is a central topic of this work. However, the various notions of integration developed here are intimately connected with a specific application- the representation of evolutions by functional integrals. The representation of a perturbation to the heat semigroup in terms of Wiener measure is known as the Feynman-Kac formula, but the term has a wider meaning in the present work. Traditionally, such representations have been used to obtain analytic information about perturbations to free evolutions as an alternative to arguments with a more operator-theoretic flavour. No applications of this type are given here. It is an underlying assumption of the presentation of this material that representations of the nature of the Feynman-Kac formula are worth obtaining, and in the process of obtaining them, we may be led to new, possibly fertile mathematical structures- a view largely motivated by the pervasive use of path integrals in quantum physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measure and Integration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Evolutionsgleichung</subfield><subfield code="0">(DE-588)4221363-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Evolutionsgleichung</subfield><subfield code="0">(DE-588)4129061-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pfadintegral</subfield><subfield code="0">(DE-588)4173973-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nichtlineare Evolutionsgleichung</subfield><subfield code="0">(DE-588)4221363-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Pfadintegral</subfield><subfield code="0">(DE-588)4173973-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Evolutionsgleichung</subfield><subfield code="0">(DE-588)4129061-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Pfadintegral</subfield><subfield code="0">(DE-588)4173973-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">353</subfield><subfield code="w">(DE-604)BV008163334</subfield><subfield code="9">353</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-015-8660-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859495</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042424078 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:14Z |
institution | BVB |
isbn | 9789401586603 9789048146505 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859495 |
oclc_num | 1184486281 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 238 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Springer Netherlands |
record_format | marc |
series | Mathematics and Its Applications |
series2 | Mathematics and Its Applications |
spelling | Jefferies, Brian Verfasser aut Evolution Processes and the Feynman-Kac Formula by Brian Jefferies Dordrecht Springer Netherlands 1996 1 Online-Ressource (X, 238 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 353 This book is an outgrowth of ideas originating from 1. Kluvanek. Unfortunately, Professor Kluvanek did not live to contribute to the project of writing up in a systematic form, the circle of ideas to which the present work is devoted. It is more than likely that with his input, the approach and areas of emphasis of the resulting exposition would have been quite different from what we have here. Nevertheless, the stamp of Kluvanek's thought and philosophy (but not necessarily his approval) abounds throughout this book. Although the title gives no indication, integration theory in vector spaces is a central topic of this work. However, the various notions of integration developed here are intimately connected with a specific application- the representation of evolutions by functional integrals. The representation of a perturbation to the heat semigroup in terms of Wiener measure is known as the Feynman-Kac formula, but the term has a wider meaning in the present work. Traditionally, such representations have been used to obtain analytic information about perturbations to free evolutions as an alternative to arguments with a more operator-theoretic flavour. No applications of this type are given here. It is an underlying assumption of the presentation of this material that representations of the nature of the Feynman-Kac formula are worth obtaining, and in the process of obtaining them, we may be led to new, possibly fertile mathematical structures- a view largely motivated by the pervasive use of path integrals in quantum physics Mathematics Functional analysis Operator theory Distribution (Probability theory) Applications of Mathematics Functional Analysis Measure and Integration Probability Theory and Stochastic Processes Operator Theory Mathematik Nichtlineare Evolutionsgleichung (DE-588)4221363-0 gnd rswk-swf Evolutionsgleichung (DE-588)4129061-6 gnd rswk-swf Dynamisches System (DE-588)4013396-5 gnd rswk-swf Pfadintegral (DE-588)4173973-5 gnd rswk-swf Dynamisches System (DE-588)4013396-5 s Nichtlineare Evolutionsgleichung (DE-588)4221363-0 s Pfadintegral (DE-588)4173973-5 s 1\p DE-604 Evolutionsgleichung (DE-588)4129061-6 s 2\p DE-604 Mathematics and Its Applications 353 (DE-604)BV008163334 353 https://doi.org/10.1007/978-94-015-8660-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Jefferies, Brian Evolution Processes and the Feynman-Kac Formula Mathematics and Its Applications Mathematics Functional analysis Operator theory Distribution (Probability theory) Applications of Mathematics Functional Analysis Measure and Integration Probability Theory and Stochastic Processes Operator Theory Mathematik Nichtlineare Evolutionsgleichung (DE-588)4221363-0 gnd Evolutionsgleichung (DE-588)4129061-6 gnd Dynamisches System (DE-588)4013396-5 gnd Pfadintegral (DE-588)4173973-5 gnd |
subject_GND | (DE-588)4221363-0 (DE-588)4129061-6 (DE-588)4013396-5 (DE-588)4173973-5 |
title | Evolution Processes and the Feynman-Kac Formula |
title_auth | Evolution Processes and the Feynman-Kac Formula |
title_exact_search | Evolution Processes and the Feynman-Kac Formula |
title_full | Evolution Processes and the Feynman-Kac Formula by Brian Jefferies |
title_fullStr | Evolution Processes and the Feynman-Kac Formula by Brian Jefferies |
title_full_unstemmed | Evolution Processes and the Feynman-Kac Formula by Brian Jefferies |
title_short | Evolution Processes and the Feynman-Kac Formula |
title_sort | evolution processes and the feynman kac formula |
topic | Mathematics Functional analysis Operator theory Distribution (Probability theory) Applications of Mathematics Functional Analysis Measure and Integration Probability Theory and Stochastic Processes Operator Theory Mathematik Nichtlineare Evolutionsgleichung (DE-588)4221363-0 gnd Evolutionsgleichung (DE-588)4129061-6 gnd Dynamisches System (DE-588)4013396-5 gnd Pfadintegral (DE-588)4173973-5 gnd |
topic_facet | Mathematics Functional analysis Operator theory Distribution (Probability theory) Applications of Mathematics Functional Analysis Measure and Integration Probability Theory and Stochastic Processes Operator Theory Mathematik Nichtlineare Evolutionsgleichung Evolutionsgleichung Dynamisches System Pfadintegral |
url | https://doi.org/10.1007/978-94-015-8660-3 |
volume_link | (DE-604)BV008163334 |
work_keys_str_mv | AT jefferiesbrian evolutionprocessesandthefeynmankacformula |