Multigrid Methods for Finite Elements:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1995
|
Schriftenreihe: | Mathematics and Its Applications
318 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Multigrid Methods for Finite Elements combines two rapidly developing fields: finite element methods, and multigrid algorithms. At the theoretical level, Shaidurov justifies the rate of convergence of various multigrid algorithms for self-adjoint and non-self-adjoint problems, positive definite and indefinite problems, and singular and spectral problems. At the practical level these statements are carried over to detailed, concrete problems, including economical constructions of triangulations and effective work with curvilinear boundaries, quasilinear equations and systems. Great attention is given to mixed formulations of finite element methods, which allow the simplification of the approximation of the biharmonic equation, the steady-state Stokes, and Navier--Stokes problems |
Beschreibung: | 1 Online-Ressource (XIV, 334 p) |
ISBN: | 9789401585279 9789048145065 |
DOI: | 10.1007/978-94-015-8527-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042424067 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1995 |||| o||u| ||||||eng d | ||
020 | |a 9789401585279 |c Online |9 978-94-015-8527-9 | ||
020 | |a 9789048145065 |c Print |9 978-90-481-4506-5 | ||
024 | 7 | |a 10.1007/978-94-015-8527-9 |2 doi | |
035 | |a (OCoLC)1165609743 | ||
035 | |a (DE-599)BVBBV042424067 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Shaidurov, V. V. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Multigrid Methods for Finite Elements |c by V. V. Shaidurov |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1995 | |
300 | |a 1 Online-Ressource (XIV, 334 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and Its Applications |v 318 | |
500 | |a Multigrid Methods for Finite Elements combines two rapidly developing fields: finite element methods, and multigrid algorithms. At the theoretical level, Shaidurov justifies the rate of convergence of various multigrid algorithms for self-adjoint and non-self-adjoint problems, positive definite and indefinite problems, and singular and spectral problems. At the practical level these statements are carried over to detailed, concrete problems, including economical constructions of triangulations and effective work with curvilinear boundaries, quasilinear equations and systems. Great attention is given to mixed formulations of finite element methods, which allow the simplification of the approximation of the biharmonic equation, the steady-state Stokes, and Navier--Stokes problems | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Computer science / Mathematics | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Engineering mathematics | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Appl.Mathematics/Computational Methods of Engineering | |
650 | 4 | |a Computational Mathematics and Numerical Analysis | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Informatik | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Mehrgitterverfahren |0 (DE-588)4038376-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Finite-Elemente-Methode |0 (DE-588)4017233-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mehrgitterverfahren |0 (DE-588)4038376-3 |D s |
689 | 0 | 1 | |a Finite-Elemente-Methode |0 (DE-588)4017233-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-015-8527-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859484 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153100567576576 |
---|---|
any_adam_object | |
author | Shaidurov, V. V. |
author_facet | Shaidurov, V. V. |
author_role | aut |
author_sort | Shaidurov, V. V. |
author_variant | v v s vv vvs |
building | Verbundindex |
bvnumber | BV042424067 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165609743 (DE-599)BVBBV042424067 |
dewey-full | 519 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519 |
dewey-search | 519 |
dewey-sort | 3519 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-015-8527-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02788nmm a2200565zcb4500</leader><controlfield tag="001">BV042424067</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401585279</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-015-8527-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048145065</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-4506-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-015-8527-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165609743</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424067</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shaidurov, V. V.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multigrid Methods for Finite Elements</subfield><subfield code="c">by V. V. Shaidurov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 334 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">318</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Multigrid Methods for Finite Elements combines two rapidly developing fields: finite element methods, and multigrid algorithms. At the theoretical level, Shaidurov justifies the rate of convergence of various multigrid algorithms for self-adjoint and non-self-adjoint problems, positive definite and indefinite problems, and singular and spectral problems. At the practical level these statements are carried over to detailed, concrete problems, including economical constructions of triangulations and effective work with curvilinear boundaries, quasilinear equations and systems. Great attention is given to mixed formulations of finite element methods, which allow the simplification of the approximation of the biharmonic equation, the steady-state Stokes, and Navier--Stokes problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Appl.Mathematics/Computational Methods of Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Mathematics and Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrgitterverfahren</subfield><subfield code="0">(DE-588)4038376-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Finite-Elemente-Methode</subfield><subfield code="0">(DE-588)4017233-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mehrgitterverfahren</subfield><subfield code="0">(DE-588)4038376-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Finite-Elemente-Methode</subfield><subfield code="0">(DE-588)4017233-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-015-8527-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859484</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042424067 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:14Z |
institution | BVB |
isbn | 9789401585279 9789048145065 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859484 |
oclc_num | 1165609743 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIV, 334 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Mathematics and Its Applications |
spelling | Shaidurov, V. V. Verfasser aut Multigrid Methods for Finite Elements by V. V. Shaidurov Dordrecht Springer Netherlands 1995 1 Online-Ressource (XIV, 334 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 318 Multigrid Methods for Finite Elements combines two rapidly developing fields: finite element methods, and multigrid algorithms. At the theoretical level, Shaidurov justifies the rate of convergence of various multigrid algorithms for self-adjoint and non-self-adjoint problems, positive definite and indefinite problems, and singular and spectral problems. At the practical level these statements are carried over to detailed, concrete problems, including economical constructions of triangulations and effective work with curvilinear boundaries, quasilinear equations and systems. Great attention is given to mixed formulations of finite element methods, which allow the simplification of the approximation of the biharmonic equation, the steady-state Stokes, and Navier--Stokes problems Mathematics Differential equations, partial Computer science / Mathematics Algorithms Engineering mathematics Applications of Mathematics Appl.Mathematics/Computational Methods of Engineering Computational Mathematics and Numerical Analysis Partial Differential Equations Informatik Mathematik Mehrgitterverfahren (DE-588)4038376-3 gnd rswk-swf Finite-Elemente-Methode (DE-588)4017233-8 gnd rswk-swf Mehrgitterverfahren (DE-588)4038376-3 s Finite-Elemente-Methode (DE-588)4017233-8 s 1\p DE-604 https://doi.org/10.1007/978-94-015-8527-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Shaidurov, V. V. Multigrid Methods for Finite Elements Mathematics Differential equations, partial Computer science / Mathematics Algorithms Engineering mathematics Applications of Mathematics Appl.Mathematics/Computational Methods of Engineering Computational Mathematics and Numerical Analysis Partial Differential Equations Informatik Mathematik Mehrgitterverfahren (DE-588)4038376-3 gnd Finite-Elemente-Methode (DE-588)4017233-8 gnd |
subject_GND | (DE-588)4038376-3 (DE-588)4017233-8 |
title | Multigrid Methods for Finite Elements |
title_auth | Multigrid Methods for Finite Elements |
title_exact_search | Multigrid Methods for Finite Elements |
title_full | Multigrid Methods for Finite Elements by V. V. Shaidurov |
title_fullStr | Multigrid Methods for Finite Elements by V. V. Shaidurov |
title_full_unstemmed | Multigrid Methods for Finite Elements by V. V. Shaidurov |
title_short | Multigrid Methods for Finite Elements |
title_sort | multigrid methods for finite elements |
topic | Mathematics Differential equations, partial Computer science / Mathematics Algorithms Engineering mathematics Applications of Mathematics Appl.Mathematics/Computational Methods of Engineering Computational Mathematics and Numerical Analysis Partial Differential Equations Informatik Mathematik Mehrgitterverfahren (DE-588)4038376-3 gnd Finite-Elemente-Methode (DE-588)4017233-8 gnd |
topic_facet | Mathematics Differential equations, partial Computer science / Mathematics Algorithms Engineering mathematics Applications of Mathematics Appl.Mathematics/Computational Methods of Engineering Computational Mathematics and Numerical Analysis Partial Differential Equations Informatik Mathematik Mehrgitterverfahren Finite-Elemente-Methode |
url | https://doi.org/10.1007/978-94-015-8527-9 |
work_keys_str_mv | AT shaidurovvv multigridmethodsforfiniteelements |