Navier—Stokes Equations in Irregular Domains:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1995
|
Schriftenreihe: | Mathematics and Its Applications
326 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The analytical basis of Navier-Stokes Equations in Irregular Domains is formed by coercive estimates, which enable proofs to be given of the solvability of the boundary value problems for Stokes and Navier-Stokes equations in weighted Sobolev and Hölder spaces, and the investigation of the smoothness of their solutions. This allows one to deal with the special problems that arise in the presence of edges or angular points in the plane case, at the boundary or noncompact boundaries. Such problems cannot be dealt with in any of the usual ways. Audience: Graduate students, research mathematicians and hydromechanicians whose work involves functional analysis and its applications to Navier-Stokes equations |
Beschreibung: | 1 Online-Ressource (XV, 566 p) |
ISBN: | 9789401585255 9789048145621 |
DOI: | 10.1007/978-94-015-8525-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042424066 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1995 |||| o||u| ||||||eng d | ||
020 | |a 9789401585255 |c Online |9 978-94-015-8525-5 | ||
020 | |a 9789048145621 |c Print |9 978-90-481-4562-1 | ||
024 | 7 | |a 10.1007/978-94-015-8525-5 |2 doi | |
035 | |a (OCoLC)879622942 | ||
035 | |a (DE-599)BVBBV042424066 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 533.62 |2 23 | |
082 | 0 | |a 532 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Stupelis, Liudas |e Verfasser |4 aut | |
245 | 1 | 0 | |a Navier—Stokes Equations in Irregular Domains |c by Liudas Stupelis |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1995 | |
300 | |a 1 Online-Ressource (XV, 566 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and Its Applications |v 326 | |
500 | |a The analytical basis of Navier-Stokes Equations in Irregular Domains is formed by coercive estimates, which enable proofs to be given of the solvability of the boundary value problems for Stokes and Navier-Stokes equations in weighted Sobolev and Hölder spaces, and the investigation of the smoothness of their solutions. This allows one to deal with the special problems that arise in the presence of edges or angular points in the plane case, at the boundary or noncompact boundaries. Such problems cannot be dealt with in any of the usual ways. Audience: Graduate students, research mathematicians and hydromechanicians whose work involves functional analysis and its applications to Navier-Stokes equations | ||
650 | 4 | |a Physics | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Operator theory | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Mechanics | |
650 | 4 | |a Fluid- and Aerodynamics | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Operator Theory | |
650 | 4 | |a Partial Differential Equations | |
650 | 0 | 7 | |a Freies Randwertproblem |0 (DE-588)4155303-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Navier-Stokes-Gleichung |0 (DE-588)4041456-5 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |2 gnd-content | |
689 | 0 | 0 | |a Navier-Stokes-Gleichung |0 (DE-588)4041456-5 |D s |
689 | 0 | 1 | |a Freies Randwertproblem |0 (DE-588)4155303-2 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-015-8525-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859483 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153100564430848 |
---|---|
any_adam_object | |
author | Stupelis, Liudas |
author_facet | Stupelis, Liudas |
author_role | aut |
author_sort | Stupelis, Liudas |
author_variant | l s ls |
building | Verbundindex |
bvnumber | BV042424066 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879622942 (DE-599)BVBBV042424066 |
dewey-full | 533.62 532 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 533 - Pneumatics (Gas mechanics) 532 - Fluid mechanics |
dewey-raw | 533.62 532 |
dewey-search | 533.62 532 |
dewey-sort | 3533.62 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
doi_str_mv | 10.1007/978-94-015-8525-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02759nmm a2200577zcb4500</leader><controlfield tag="001">BV042424066</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401585255</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-015-8525-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048145621</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-4562-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-015-8525-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879622942</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424066</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">533.62</subfield><subfield code="2">23</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">532</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stupelis, Liudas</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Navier—Stokes Equations in Irregular Domains</subfield><subfield code="c">by Liudas Stupelis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 566 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">326</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The analytical basis of Navier-Stokes Equations in Irregular Domains is formed by coercive estimates, which enable proofs to be given of the solvability of the boundary value problems for Stokes and Navier-Stokes equations in weighted Sobolev and Hölder spaces, and the investigation of the smoothness of their solutions. This allows one to deal with the special problems that arise in the presence of edges or angular points in the plane case, at the boundary or noncompact boundaries. Such problems cannot be dealt with in any of the usual ways. Audience: Graduate students, research mathematicians and hydromechanicians whose work involves functional analysis and its applications to Navier-Stokes equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid- and Aerodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Freies Randwertproblem</subfield><subfield code="0">(DE-588)4155303-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Navier-Stokes-Gleichung</subfield><subfield code="0">(DE-588)4041456-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Navier-Stokes-Gleichung</subfield><subfield code="0">(DE-588)4041456-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Freies Randwertproblem</subfield><subfield code="0">(DE-588)4155303-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-015-8525-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859483</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift gnd-content |
genre_facet | Konferenzschrift |
id | DE-604.BV042424066 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:14Z |
institution | BVB |
isbn | 9789401585255 9789048145621 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859483 |
oclc_num | 879622942 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XV, 566 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Mathematics and Its Applications |
spelling | Stupelis, Liudas Verfasser aut Navier—Stokes Equations in Irregular Domains by Liudas Stupelis Dordrecht Springer Netherlands 1995 1 Online-Ressource (XV, 566 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 326 The analytical basis of Navier-Stokes Equations in Irregular Domains is formed by coercive estimates, which enable proofs to be given of the solvability of the boundary value problems for Stokes and Navier-Stokes equations in weighted Sobolev and Hölder spaces, and the investigation of the smoothness of their solutions. This allows one to deal with the special problems that arise in the presence of edges or angular points in the plane case, at the boundary or noncompact boundaries. Such problems cannot be dealt with in any of the usual ways. Audience: Graduate students, research mathematicians and hydromechanicians whose work involves functional analysis and its applications to Navier-Stokes equations Physics Functional analysis Operator theory Differential equations, partial Mechanics Fluid- and Aerodynamics Functional Analysis Operator Theory Partial Differential Equations Freies Randwertproblem (DE-588)4155303-2 gnd rswk-swf Navier-Stokes-Gleichung (DE-588)4041456-5 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift gnd-content Navier-Stokes-Gleichung (DE-588)4041456-5 s Freies Randwertproblem (DE-588)4155303-2 s 2\p DE-604 https://doi.org/10.1007/978-94-015-8525-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Stupelis, Liudas Navier—Stokes Equations in Irregular Domains Physics Functional analysis Operator theory Differential equations, partial Mechanics Fluid- and Aerodynamics Functional Analysis Operator Theory Partial Differential Equations Freies Randwertproblem (DE-588)4155303-2 gnd Navier-Stokes-Gleichung (DE-588)4041456-5 gnd |
subject_GND | (DE-588)4155303-2 (DE-588)4041456-5 (DE-588)1071861417 |
title | Navier—Stokes Equations in Irregular Domains |
title_auth | Navier—Stokes Equations in Irregular Domains |
title_exact_search | Navier—Stokes Equations in Irregular Domains |
title_full | Navier—Stokes Equations in Irregular Domains by Liudas Stupelis |
title_fullStr | Navier—Stokes Equations in Irregular Domains by Liudas Stupelis |
title_full_unstemmed | Navier—Stokes Equations in Irregular Domains by Liudas Stupelis |
title_short | Navier—Stokes Equations in Irregular Domains |
title_sort | navier stokes equations in irregular domains |
topic | Physics Functional analysis Operator theory Differential equations, partial Mechanics Fluid- and Aerodynamics Functional Analysis Operator Theory Partial Differential Equations Freies Randwertproblem (DE-588)4155303-2 gnd Navier-Stokes-Gleichung (DE-588)4041456-5 gnd |
topic_facet | Physics Functional analysis Operator theory Differential equations, partial Mechanics Fluid- and Aerodynamics Functional Analysis Operator Theory Partial Differential Equations Freies Randwertproblem Navier-Stokes-Gleichung Konferenzschrift |
url | https://doi.org/10.1007/978-94-015-8525-5 |
work_keys_str_mv | AT stupelisliudas navierstokesequationsinirregulardomains |