Stability Theorems in Geometry and Analysis:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1994
|
Schriftenreihe: | Mathematics and Its Applications
304 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 1. Preliminaries, Notation, and Terminology n n 1.1. Sets and functions in lR. • Throughout the book, lR. stands for the n-dimensional arithmetic space of points x = (X},X2,'" ,xn)j Ixl is the length of n n a vector x E lR. and (x, y) is the scalar product of vectors x and y in lR. , i.e., for x = (Xl, X2, •.• , xn) and y = (y}, Y2,··., Yn), Ixl = Jx~ + x~ + ... + x~, (x, y) = XIYl + X2Y2 + ... + XnYn. n Given arbitrary points a and b in lR. , we denote by [a, b] the segment that joins n them, i.e. the collection of points x E lR. of the form x = >.a + I'b, where>. + I' = 1 and >. ~ 0, I' ~ O. n We denote by ei, i = 1,2, ... ,n, the vector in lR. whose ith coordinate is equal to 1 and the others vanish. The vectors el, e2, ... ,en form a basis for the space n lR. , which is called canonical. If P( x) is some proposition in a variable x and A is a set, then {x E A I P(x)} denotes the collection of all the elements of A for which the proposition P( x) is true |
Beschreibung: | 1 Online-Ressource (XII, 394 p) |
ISBN: | 9789401583602 9789048144679 |
DOI: | 10.1007/978-94-015-8360-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042424051 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1994 |||| o||u| ||||||eng d | ||
020 | |a 9789401583602 |c Online |9 978-94-015-8360-2 | ||
020 | |a 9789048144679 |c Print |9 978-90-481-4467-9 | ||
024 | 7 | |a 10.1007/978-94-015-8360-2 |2 doi | |
035 | |a (OCoLC)1184501759 | ||
035 | |a (DE-599)BVBBV042424051 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.72 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Reshetnyak, Yu. G. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Stability Theorems in Geometry and Analysis |c by Yu. G. Reshetnyak |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1994 | |
300 | |a 1 Online-Ressource (XII, 394 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and Its Applications |v 304 | |
500 | |a 1. Preliminaries, Notation, and Terminology n n 1.1. Sets and functions in lR. • Throughout the book, lR. stands for the n-dimensional arithmetic space of points x = (X},X2,'" ,xn)j Ixl is the length of n n a vector x E lR. and (x, y) is the scalar product of vectors x and y in lR. , i.e., for x = (Xl, X2, •.• , xn) and y = (y}, Y2,··., Yn), Ixl = Jx~ + x~ + ... + x~, (x, y) = XIYl + X2Y2 + ... + XnYn. n Given arbitrary points a and b in lR. , we denote by [a, b] the segment that joins n them, i.e. the collection of points x E lR. of the form x = >.a + I'b, where>. + I' = 1 and >. ~ 0, I' ~ O. n We denote by ei, i = 1,2, ... ,n, the vector in lR. whose ith coordinate is equal to 1 and the others vanish. The vectors el, e2, ... ,en form a basis for the space n lR. , which is called canonical. If P( x) is some proposition in a variable x and A is a set, then {x E A I P(x)} denotes the collection of all the elements of A for which the proposition P( x) is true | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Topological Groups | |
650 | 4 | |a Integral equations | |
650 | 4 | |a Integral Transforms | |
650 | 4 | |a Geometry | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Integral Transforms, Operational Calculus | |
650 | 4 | |a Integral Equations | |
650 | 4 | |a Calculus of Variations and Optimal Control; Optimization | |
650 | 4 | |a Topological Groups, Lie Groups | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Konforme Abbildung |0 (DE-588)4164968-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Liouville-Satz |0 (DE-588)4167786-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stabilität |0 (DE-588)4056693-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialgeometrie |0 (DE-588)4012248-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Konforme Abbildung |0 (DE-588)4164968-0 |D s |
689 | 0 | 1 | |a Liouville-Satz |0 (DE-588)4167786-9 |D s |
689 | 0 | 2 | |a Stabilität |0 (DE-588)4056693-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Differentialgeometrie |0 (DE-588)4012248-7 |D s |
689 | 1 | 1 | |a Stabilität |0 (DE-588)4056693-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-015-8360-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859468 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153100527730688 |
---|---|
any_adam_object | |
author | Reshetnyak, Yu. G. |
author_facet | Reshetnyak, Yu. G. |
author_role | aut |
author_sort | Reshetnyak, Yu. G. |
author_variant | y g r yg ygr |
building | Verbundindex |
bvnumber | BV042424051 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184501759 (DE-599)BVBBV042424051 |
dewey-full | 515.72 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.72 |
dewey-search | 515.72 |
dewey-sort | 3515.72 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-015-8360-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03351nmm a2200649zcb4500</leader><controlfield tag="001">BV042424051</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401583602</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-015-8360-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048144679</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-4467-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-015-8360-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184501759</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424051</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.72</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Reshetnyak, Yu. G.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stability Theorems in Geometry and Analysis</subfield><subfield code="c">by Yu. G. Reshetnyak</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 394 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">304</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Preliminaries, Notation, and Terminology n n 1.1. Sets and functions in lR. • Throughout the book, lR. stands for the n-dimensional arithmetic space of points x = (X},X2,'" ,xn)j Ixl is the length of n n a vector x E lR. and (x, y) is the scalar product of vectors x and y in lR. , i.e., for x = (Xl, X2, •.• , xn) and y = (y}, Y2,··., Yn), Ixl = Jx~ + x~ + ... + x~, (x, y) = XIYl + X2Y2 + ... + XnYn. n Given arbitrary points a and b in lR. , we denote by [a, b] the segment that joins n them, i.e. the collection of points x E lR. of the form x = >.a + I'b, where>. + I' = 1 and >. ~ 0, I' ~ O. n We denote by ei, i = 1,2, ... ,n, the vector in lR. whose ith coordinate is equal to 1 and the others vanish. The vectors el, e2, ... ,en form a basis for the space n lR. , which is called canonical. If P( x) is some proposition in a variable x and A is a set, then {x E A I P(x)} denotes the collection of all the elements of A for which the proposition P( x) is true</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Transforms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Transforms, Operational Calculus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konforme Abbildung</subfield><subfield code="0">(DE-588)4164968-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Liouville-Satz</subfield><subfield code="0">(DE-588)4167786-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stabilität</subfield><subfield code="0">(DE-588)4056693-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Konforme Abbildung</subfield><subfield code="0">(DE-588)4164968-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Liouville-Satz</subfield><subfield code="0">(DE-588)4167786-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Stabilität</subfield><subfield code="0">(DE-588)4056693-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Stabilität</subfield><subfield code="0">(DE-588)4056693-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-015-8360-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859468</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042424051 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:14Z |
institution | BVB |
isbn | 9789401583602 9789048144679 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859468 |
oclc_num | 1184501759 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 394 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Mathematics and Its Applications |
spelling | Reshetnyak, Yu. G. Verfasser aut Stability Theorems in Geometry and Analysis by Yu. G. Reshetnyak Dordrecht Springer Netherlands 1994 1 Online-Ressource (XII, 394 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 304 1. Preliminaries, Notation, and Terminology n n 1.1. Sets and functions in lR. • Throughout the book, lR. stands for the n-dimensional arithmetic space of points x = (X},X2,'" ,xn)j Ixl is the length of n n a vector x E lR. and (x, y) is the scalar product of vectors x and y in lR. , i.e., for x = (Xl, X2, •.• , xn) and y = (y}, Y2,··., Yn), Ixl = Jx~ + x~ + ... + x~, (x, y) = XIYl + X2Y2 + ... + XnYn. n Given arbitrary points a and b in lR. , we denote by [a, b] the segment that joins n them, i.e. the collection of points x E lR. of the form x = >.a + I'b, where>. + I' = 1 and >. ~ 0, I' ~ O. n We denote by ei, i = 1,2, ... ,n, the vector in lR. whose ith coordinate is equal to 1 and the others vanish. The vectors el, e2, ... ,en form a basis for the space n lR. , which is called canonical. If P( x) is some proposition in a variable x and A is a set, then {x E A I P(x)} denotes the collection of all the elements of A for which the proposition P( x) is true Mathematics Topological Groups Integral equations Integral Transforms Geometry Mathematical optimization Integral Transforms, Operational Calculus Integral Equations Calculus of Variations and Optimal Control; Optimization Topological Groups, Lie Groups Mathematik Konforme Abbildung (DE-588)4164968-0 gnd rswk-swf Liouville-Satz (DE-588)4167786-9 gnd rswk-swf Stabilität (DE-588)4056693-6 gnd rswk-swf Differentialgeometrie (DE-588)4012248-7 gnd rswk-swf Konforme Abbildung (DE-588)4164968-0 s Liouville-Satz (DE-588)4167786-9 s Stabilität (DE-588)4056693-6 s 1\p DE-604 Differentialgeometrie (DE-588)4012248-7 s 2\p DE-604 https://doi.org/10.1007/978-94-015-8360-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Reshetnyak, Yu. G. Stability Theorems in Geometry and Analysis Mathematics Topological Groups Integral equations Integral Transforms Geometry Mathematical optimization Integral Transforms, Operational Calculus Integral Equations Calculus of Variations and Optimal Control; Optimization Topological Groups, Lie Groups Mathematik Konforme Abbildung (DE-588)4164968-0 gnd Liouville-Satz (DE-588)4167786-9 gnd Stabilität (DE-588)4056693-6 gnd Differentialgeometrie (DE-588)4012248-7 gnd |
subject_GND | (DE-588)4164968-0 (DE-588)4167786-9 (DE-588)4056693-6 (DE-588)4012248-7 |
title | Stability Theorems in Geometry and Analysis |
title_auth | Stability Theorems in Geometry and Analysis |
title_exact_search | Stability Theorems in Geometry and Analysis |
title_full | Stability Theorems in Geometry and Analysis by Yu. G. Reshetnyak |
title_fullStr | Stability Theorems in Geometry and Analysis by Yu. G. Reshetnyak |
title_full_unstemmed | Stability Theorems in Geometry and Analysis by Yu. G. Reshetnyak |
title_short | Stability Theorems in Geometry and Analysis |
title_sort | stability theorems in geometry and analysis |
topic | Mathematics Topological Groups Integral equations Integral Transforms Geometry Mathematical optimization Integral Transforms, Operational Calculus Integral Equations Calculus of Variations and Optimal Control; Optimization Topological Groups, Lie Groups Mathematik Konforme Abbildung (DE-588)4164968-0 gnd Liouville-Satz (DE-588)4167786-9 gnd Stabilität (DE-588)4056693-6 gnd Differentialgeometrie (DE-588)4012248-7 gnd |
topic_facet | Mathematics Topological Groups Integral equations Integral Transforms Geometry Mathematical optimization Integral Transforms, Operational Calculus Integral Equations Calculus of Variations and Optimal Control; Optimization Topological Groups, Lie Groups Mathematik Konforme Abbildung Liouville-Satz Stabilität Differentialgeometrie |
url | https://doi.org/10.1007/978-94-015-8360-2 |
work_keys_str_mv | AT reshetnyakyug stabilitytheoremsingeometryandanalysis |