Nonparametric Methods in Change-Point Problems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1993
|
Schriftenreihe: | Mathematics and Its Applications
243 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The explosive development of information science and technology puts in new problems involving statistical data analysis. These problems result from higher requirements concerning the reliability of statistical decisions, the accuracy of mathematical models and the quality of control in complex systems. A new aspect of statistical analysis has emerged, closely connected with one of the basic questions of cynergetics: how to "compress" large volumes of experimental data in order to extract the most valuable information from data observed. Detection of large "homogeneous" segments of data enables one to identify "hidden" regularities in an object's behavior, to create mathematical models for each segment of homogeneity, to choose an appropriate control, etc. Statistical methods dealing with the detection of changes in the characteristics of random processes can be of great use in all these problems. These methods have accompanied the rapid growth in data beginning from the middle of our century. According to a tradition of more than thirty years, we call this sphere of statistical analysis the "theory of change-point detection. " During the last fifteen years, we have witnessed many exciting developments in the theory of change-point detection. New promising directions of research have emerged, and traditional trends have flourished anew. Despite this, most of the results are widely scattered in the literature and few monographs exist. A real need has arisen for up-to-date books which present an account of important current research trends, one of which is the theory of non parametric change-point detection |
Beschreibung: | 1 Online-Ressource (XII, 210 p) |
ISBN: | 9789401581639 9789048142408 |
DOI: | 10.1007/978-94-015-8163-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042424040 | ||
003 | DE-604 | ||
005 | 20171009 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1993 |||| o||u| ||||||eng d | ||
020 | |a 9789401581639 |c Online |9 978-94-015-8163-9 | ||
020 | |a 9789048142408 |c Print |9 978-90-481-4240-8 | ||
024 | 7 | |a 10.1007/978-94-015-8163-9 |2 doi | |
035 | |a (OCoLC)879622997 | ||
035 | |a (DE-599)BVBBV042424040 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.5 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Brodskij, Boris E. |d 1955- |e Verfasser |0 (DE-588)172567629 |4 aut | |
245 | 1 | 0 | |a Nonparametric Methods in Change-Point Problems |c by B. E. Brodsky, B. S. Darkhovsky |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1993 | |
300 | |a 1 Online-Ressource (XII, 210 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematics and Its Applications |v 243 | |
500 | |a The explosive development of information science and technology puts in new problems involving statistical data analysis. These problems result from higher requirements concerning the reliability of statistical decisions, the accuracy of mathematical models and the quality of control in complex systems. A new aspect of statistical analysis has emerged, closely connected with one of the basic questions of cynergetics: how to "compress" large volumes of experimental data in order to extract the most valuable information from data observed. Detection of large "homogeneous" segments of data enables one to identify "hidden" regularities in an object's behavior, to create mathematical models for each segment of homogeneity, to choose an appropriate control, etc. Statistical methods dealing with the detection of changes in the characteristics of random processes can be of great use in all these problems. These methods have accompanied the rapid growth in data beginning from the middle of our century. According to a tradition of more than thirty years, we call this sphere of statistical analysis the "theory of change-point detection. " During the last fifteen years, we have witnessed many exciting developments in the theory of change-point detection. New promising directions of research have emerged, and traditional trends have flourished anew. Despite this, most of the results are widely scattered in the literature and few monographs exist. A real need has arisen for up-to-date books which present an account of important current research trends, one of which is the theory of non parametric change-point detection | ||
650 | 4 | |a Statistics | |
650 | 4 | |a Systems theory | |
650 | 4 | |a Computer engineering | |
650 | 4 | |a Statistics, general | |
650 | 4 | |a Systems Theory, Control | |
650 | 4 | |a Electrical Engineering | |
650 | 4 | |a Statistik | |
650 | 0 | 7 | |a Verteilungsfunktion |0 (DE-588)4192219-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtparametrischer Test |0 (DE-588)4075372-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Verteilungsfunktion |0 (DE-588)4192219-0 |D s |
689 | 0 | 1 | |a Nichtparametrischer Test |0 (DE-588)4075372-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Darchovskij, Boris S. |d 1938- |e Sonstige |0 (DE-588)172567637 |4 oth | |
830 | 0 | |a Mathematics and Its Applications |v 243 |w (DE-604)BV008163334 |9 243 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-015-8163-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859457 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153100512002048 |
---|---|
any_adam_object | |
author | Brodskij, Boris E. 1955- |
author_GND | (DE-588)172567629 (DE-588)172567637 |
author_facet | Brodskij, Boris E. 1955- |
author_role | aut |
author_sort | Brodskij, Boris E. 1955- |
author_variant | b e b be beb |
building | Verbundindex |
bvnumber | BV042424040 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879622997 (DE-599)BVBBV042424040 |
dewey-full | 519.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5 |
dewey-search | 519.5 |
dewey-sort | 3519.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-015-8163-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03613nmm a2200541zcb4500</leader><controlfield tag="001">BV042424040</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171009 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1993 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401581639</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-015-8163-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048142408</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-4240-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-015-8163-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879622997</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424040</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brodskij, Boris E.</subfield><subfield code="d">1955-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)172567629</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonparametric Methods in Change-Point Problems</subfield><subfield code="c">by B. E. Brodsky, B. S. Darkhovsky</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 210 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">243</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The explosive development of information science and technology puts in new problems involving statistical data analysis. These problems result from higher requirements concerning the reliability of statistical decisions, the accuracy of mathematical models and the quality of control in complex systems. A new aspect of statistical analysis has emerged, closely connected with one of the basic questions of cynergetics: how to "compress" large volumes of experimental data in order to extract the most valuable information from data observed. Detection of large "homogeneous" segments of data enables one to identify "hidden" regularities in an object's behavior, to create mathematical models for each segment of homogeneity, to choose an appropriate control, etc. Statistical methods dealing with the detection of changes in the characteristics of random processes can be of great use in all these problems. These methods have accompanied the rapid growth in data beginning from the middle of our century. According to a tradition of more than thirty years, we call this sphere of statistical analysis the "theory of change-point detection. " During the last fifteen years, we have witnessed many exciting developments in the theory of change-point detection. New promising directions of research have emerged, and traditional trends have flourished anew. Despite this, most of the results are widely scattered in the literature and few monographs exist. A real need has arisen for up-to-date books which present an account of important current research trends, one of which is the theory of non parametric change-point detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems Theory, Control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verteilungsfunktion</subfield><subfield code="0">(DE-588)4192219-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtparametrischer Test</subfield><subfield code="0">(DE-588)4075372-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Verteilungsfunktion</subfield><subfield code="0">(DE-588)4192219-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nichtparametrischer Test</subfield><subfield code="0">(DE-588)4075372-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Darchovskij, Boris S.</subfield><subfield code="d">1938-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)172567637</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">243</subfield><subfield code="w">(DE-604)BV008163334</subfield><subfield code="9">243</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-015-8163-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859457</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042424040 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:14Z |
institution | BVB |
isbn | 9789401581639 9789048142408 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859457 |
oclc_num | 879622997 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 210 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Springer Netherlands |
record_format | marc |
series | Mathematics and Its Applications |
series2 | Mathematics and Its Applications |
spelling | Brodskij, Boris E. 1955- Verfasser (DE-588)172567629 aut Nonparametric Methods in Change-Point Problems by B. E. Brodsky, B. S. Darkhovsky Dordrecht Springer Netherlands 1993 1 Online-Ressource (XII, 210 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 243 The explosive development of information science and technology puts in new problems involving statistical data analysis. These problems result from higher requirements concerning the reliability of statistical decisions, the accuracy of mathematical models and the quality of control in complex systems. A new aspect of statistical analysis has emerged, closely connected with one of the basic questions of cynergetics: how to "compress" large volumes of experimental data in order to extract the most valuable information from data observed. Detection of large "homogeneous" segments of data enables one to identify "hidden" regularities in an object's behavior, to create mathematical models for each segment of homogeneity, to choose an appropriate control, etc. Statistical methods dealing with the detection of changes in the characteristics of random processes can be of great use in all these problems. These methods have accompanied the rapid growth in data beginning from the middle of our century. According to a tradition of more than thirty years, we call this sphere of statistical analysis the "theory of change-point detection. " During the last fifteen years, we have witnessed many exciting developments in the theory of change-point detection. New promising directions of research have emerged, and traditional trends have flourished anew. Despite this, most of the results are widely scattered in the literature and few monographs exist. A real need has arisen for up-to-date books which present an account of important current research trends, one of which is the theory of non parametric change-point detection Statistics Systems theory Computer engineering Statistics, general Systems Theory, Control Electrical Engineering Statistik Verteilungsfunktion (DE-588)4192219-0 gnd rswk-swf Nichtparametrischer Test (DE-588)4075372-4 gnd rswk-swf Verteilungsfunktion (DE-588)4192219-0 s Nichtparametrischer Test (DE-588)4075372-4 s 1\p DE-604 Darchovskij, Boris S. 1938- Sonstige (DE-588)172567637 oth Mathematics and Its Applications 243 (DE-604)BV008163334 243 https://doi.org/10.1007/978-94-015-8163-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Brodskij, Boris E. 1955- Nonparametric Methods in Change-Point Problems Mathematics and Its Applications Statistics Systems theory Computer engineering Statistics, general Systems Theory, Control Electrical Engineering Statistik Verteilungsfunktion (DE-588)4192219-0 gnd Nichtparametrischer Test (DE-588)4075372-4 gnd |
subject_GND | (DE-588)4192219-0 (DE-588)4075372-4 |
title | Nonparametric Methods in Change-Point Problems |
title_auth | Nonparametric Methods in Change-Point Problems |
title_exact_search | Nonparametric Methods in Change-Point Problems |
title_full | Nonparametric Methods in Change-Point Problems by B. E. Brodsky, B. S. Darkhovsky |
title_fullStr | Nonparametric Methods in Change-Point Problems by B. E. Brodsky, B. S. Darkhovsky |
title_full_unstemmed | Nonparametric Methods in Change-Point Problems by B. E. Brodsky, B. S. Darkhovsky |
title_short | Nonparametric Methods in Change-Point Problems |
title_sort | nonparametric methods in change point problems |
topic | Statistics Systems theory Computer engineering Statistics, general Systems Theory, Control Electrical Engineering Statistik Verteilungsfunktion (DE-588)4192219-0 gnd Nichtparametrischer Test (DE-588)4075372-4 gnd |
topic_facet | Statistics Systems theory Computer engineering Statistics, general Systems Theory, Control Electrical Engineering Statistik Verteilungsfunktion Nichtparametrischer Test |
url | https://doi.org/10.1007/978-94-015-8163-9 |
volume_link | (DE-604)BV008163334 |
work_keys_str_mv | AT brodskijborise nonparametricmethodsinchangepointproblems AT darchovskijboriss nonparametricmethodsinchangepointproblems |