Multi-Dimensional Modal Logic:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1997
|
Schriftenreihe: | Applied Logic Series
4 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Modal Logic is a branch of logic with applications in many related disciplines such as computer science, philosophy, linguistics and artificial intelligence. Over the last twenty years, in all of these neighbouring fields, modal systems have been developed that we call multi-dimensional. (Our definition of multi-dimensionality in modal logic is a technical one: we call a modal formalism multi-dimensional if, in its intended semantics, the universe of a model consists of states that are tuples over some more basic set.) This book treats such multi-dimensional modal logics in a uniform way, linking their mathematical theory to the research tradition in algebraic logic. We will define and discuss a number of systems in detail, focusing on such aspects as expressiveness, definability, axiomatics, decidability and interpolation. Although the book will be mathematical in spirit, we take care to give motivations from the disciplines mentioned earlier on |
Beschreibung: | 1 Online-Ressource (XIII, 239 p) |
ISBN: | 9789401156943 9789401064019 |
ISSN: | 1386-2790 |
DOI: | 10.1007/978-94-011-5694-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423993 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1997 |||| o||u| ||||||eng d | ||
020 | |a 9789401156943 |c Online |9 978-94-011-5694-3 | ||
020 | |a 9789401064019 |c Print |9 978-94-010-6401-9 | ||
024 | 7 | |a 10.1007/978-94-011-5694-3 |2 doi | |
035 | |a (OCoLC)863704623 | ||
035 | |a (DE-599)BVBBV042423993 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 160 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Marx, Maarten |e Verfasser |4 aut | |
245 | 1 | 0 | |a Multi-Dimensional Modal Logic |c by Maarten Marx, Yde Venema |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1997 | |
300 | |a 1 Online-Ressource (XIII, 239 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Applied Logic Series |v 4 |x 1386-2790 | |
500 | |a Modal Logic is a branch of logic with applications in many related disciplines such as computer science, philosophy, linguistics and artificial intelligence. Over the last twenty years, in all of these neighbouring fields, modal systems have been developed that we call multi-dimensional. (Our definition of multi-dimensionality in modal logic is a technical one: we call a modal formalism multi-dimensional if, in its intended semantics, the universe of a model consists of states that are tuples over some more basic set.) This book treats such multi-dimensional modal logics in a uniform way, linking their mathematical theory to the research tradition in algebraic logic. We will define and discuss a number of systems in detail, focusing on such aspects as expressiveness, definability, axiomatics, decidability and interpolation. Although the book will be mathematical in spirit, we take care to give motivations from the disciplines mentioned earlier on | ||
650 | 4 | |a Philosophy (General) | |
650 | 4 | |a Logic | |
650 | 4 | |a Logic, Symbolic and mathematical | |
650 | 4 | |a Computational linguistics | |
650 | 4 | |a Philosophy | |
650 | 4 | |a Mathematical Logic and Foundations | |
650 | 4 | |a Computational Linguistics | |
650 | 4 | |a Philosophie | |
650 | 0 | 7 | |a Modallogik |0 (DE-588)4074914-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Modallogik |0 (DE-588)4074914-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Venema, Yde |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-011-5694-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859410 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153100406095872 |
---|---|
any_adam_object | |
author | Marx, Maarten |
author_facet | Marx, Maarten |
author_role | aut |
author_sort | Marx, Maarten |
author_variant | m m mm |
building | Verbundindex |
bvnumber | BV042423993 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863704623 (DE-599)BVBBV042423993 |
dewey-full | 160 |
dewey-hundreds | 100 - Philosophy & psychology |
dewey-ones | 160 - Philosophical logic |
dewey-raw | 160 |
dewey-search | 160 |
dewey-sort | 3160 |
dewey-tens | 160 - Philosophical logic |
discipline | Mathematik Philosophie |
doi_str_mv | 10.1007/978-94-011-5694-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02672nmm a2200517zcb4500</leader><controlfield tag="001">BV042423993</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401156943</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-011-5694-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401064019</subfield><subfield code="c">Print</subfield><subfield code="9">978-94-010-6401-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-011-5694-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863704623</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423993</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">160</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Marx, Maarten</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multi-Dimensional Modal Logic</subfield><subfield code="c">by Maarten Marx, Yde Venema</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 239 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Applied Logic Series</subfield><subfield code="v">4</subfield><subfield code="x">1386-2790</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Modal Logic is a branch of logic with applications in many related disciplines such as computer science, philosophy, linguistics and artificial intelligence. Over the last twenty years, in all of these neighbouring fields, modal systems have been developed that we call multi-dimensional. (Our definition of multi-dimensionality in modal logic is a technical one: we call a modal formalism multi-dimensional if, in its intended semantics, the universe of a model consists of states that are tuples over some more basic set.) This book treats such multi-dimensional modal logics in a uniform way, linking their mathematical theory to the research tradition in algebraic logic. We will define and discuss a number of systems in detail, focusing on such aspects as expressiveness, definability, axiomatics, decidability and interpolation. Although the book will be mathematical in spirit, we take care to give motivations from the disciplines mentioned earlier on</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Philosophy (General)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational linguistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Philosophy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Logic and Foundations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Linguistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Philosophie</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modallogik</subfield><subfield code="0">(DE-588)4074914-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Modallogik</subfield><subfield code="0">(DE-588)4074914-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Venema, Yde</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-011-5694-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859410</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423993 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:14Z |
institution | BVB |
isbn | 9789401156943 9789401064019 |
issn | 1386-2790 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859410 |
oclc_num | 863704623 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIII, 239 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Applied Logic Series |
spelling | Marx, Maarten Verfasser aut Multi-Dimensional Modal Logic by Maarten Marx, Yde Venema Dordrecht Springer Netherlands 1997 1 Online-Ressource (XIII, 239 p) txt rdacontent c rdamedia cr rdacarrier Applied Logic Series 4 1386-2790 Modal Logic is a branch of logic with applications in many related disciplines such as computer science, philosophy, linguistics and artificial intelligence. Over the last twenty years, in all of these neighbouring fields, modal systems have been developed that we call multi-dimensional. (Our definition of multi-dimensionality in modal logic is a technical one: we call a modal formalism multi-dimensional if, in its intended semantics, the universe of a model consists of states that are tuples over some more basic set.) This book treats such multi-dimensional modal logics in a uniform way, linking their mathematical theory to the research tradition in algebraic logic. We will define and discuss a number of systems in detail, focusing on such aspects as expressiveness, definability, axiomatics, decidability and interpolation. Although the book will be mathematical in spirit, we take care to give motivations from the disciplines mentioned earlier on Philosophy (General) Logic Logic, Symbolic and mathematical Computational linguistics Philosophy Mathematical Logic and Foundations Computational Linguistics Philosophie Modallogik (DE-588)4074914-9 gnd rswk-swf Modallogik (DE-588)4074914-9 s 1\p DE-604 Venema, Yde Sonstige oth https://doi.org/10.1007/978-94-011-5694-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Marx, Maarten Multi-Dimensional Modal Logic Philosophy (General) Logic Logic, Symbolic and mathematical Computational linguistics Philosophy Mathematical Logic and Foundations Computational Linguistics Philosophie Modallogik (DE-588)4074914-9 gnd |
subject_GND | (DE-588)4074914-9 |
title | Multi-Dimensional Modal Logic |
title_auth | Multi-Dimensional Modal Logic |
title_exact_search | Multi-Dimensional Modal Logic |
title_full | Multi-Dimensional Modal Logic by Maarten Marx, Yde Venema |
title_fullStr | Multi-Dimensional Modal Logic by Maarten Marx, Yde Venema |
title_full_unstemmed | Multi-Dimensional Modal Logic by Maarten Marx, Yde Venema |
title_short | Multi-Dimensional Modal Logic |
title_sort | multi dimensional modal logic |
topic | Philosophy (General) Logic Logic, Symbolic and mathematical Computational linguistics Philosophy Mathematical Logic and Foundations Computational Linguistics Philosophie Modallogik (DE-588)4074914-9 gnd |
topic_facet | Philosophy (General) Logic Logic, Symbolic and mathematical Computational linguistics Philosophy Mathematical Logic and Foundations Computational Linguistics Philosophie Modallogik |
url | https://doi.org/10.1007/978-94-011-5694-3 |
work_keys_str_mv | AT marxmaarten multidimensionalmodallogic AT venemayde multidimensionalmodallogic |