Lie Groups and Lie Algebras: Their Representations, Generalisations and Applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1998
|
Schriftenreihe: | Mathematics and Its Applications
433 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This collection contains papers conceptually related to the classical ideas of Sophus Lie (i.e., to Lie groups and Lie algebras). Obviously, it is impos sible to embrace all such topics in a book of reasonable size. The contents of this one reflect the scientific interests of those authors whose activities, to some extent at least, are associated with the International Sophus Lie Center. We have divided the book into five parts in accordance with the basic topics of the papers (although it can be easily seen that some of them may be attributed to several parts simultaneously). The first part (quantum mathematics) combines the papers related to the methods generated by the concepts of quantization and quantum group. The second part is devoted to the theory of hypergroups and Lie hypergroups, which is one of the most important generalizations of the classical concept of locally compact group and of Lie group. A natural harmonic analysis arises on hypergroups, while any abstract transformation of Fourier type is gen erated by some hypergroup (commutative or not). Part III contains papers on the geometry of homogeneous spaces, Lie algebras and Lie superalgebras. Classical problems of the representation theory for Lie groups, as well as for topological groups and semigroups, are discussed in the papers of Part IV. Finally, the last part of the collection relates to applications of the ideas of Sophus Lie to differential equations |
Beschreibung: | 1 Online-Ressource (VII, 447 p) |
ISBN: | 9789401152587 9789401062121 |
DOI: | 10.1007/978-94-011-5258-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423969 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1998 |||| o||u| ||||||eng d | ||
020 | |a 9789401152587 |c Online |9 978-94-011-5258-7 | ||
020 | |a 9789401062121 |c Print |9 978-94-010-6212-1 | ||
024 | 7 | |a 10.1007/978-94-011-5258-7 |2 doi | |
035 | |a (OCoLC)1165520890 | ||
035 | |a (DE-599)BVBBV042423969 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.48 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Komrakov, B. P. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lie Groups and Lie Algebras |b Their Representations, Generalisations and Applications |c edited by B. P. Komrakov, I. S. Krasil’shchik, G. L. Litvinov, A. B. Sossinsky |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1998 | |
300 | |a 1 Online-Ressource (VII, 447 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and Its Applications |v 433 | |
500 | |a This collection contains papers conceptually related to the classical ideas of Sophus Lie (i.e., to Lie groups and Lie algebras). Obviously, it is impos sible to embrace all such topics in a book of reasonable size. The contents of this one reflect the scientific interests of those authors whose activities, to some extent at least, are associated with the International Sophus Lie Center. We have divided the book into five parts in accordance with the basic topics of the papers (although it can be easily seen that some of them may be attributed to several parts simultaneously). The first part (quantum mathematics) combines the papers related to the methods generated by the concepts of quantization and quantum group. The second part is devoted to the theory of hypergroups and Lie hypergroups, which is one of the most important generalizations of the classical concept of locally compact group and of Lie group. A natural harmonic analysis arises on hypergroups, while any abstract transformation of Fourier type is gen erated by some hypergroup (commutative or not). Part III contains papers on the geometry of homogeneous spaces, Lie algebras and Lie superalgebras. Classical problems of the representation theory for Lie groups, as well as for topological groups and semigroups, are discussed in the papers of Part IV. Finally, the last part of the collection relates to applications of the ideas of Sophus Lie to differential equations | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebra | |
650 | 4 | |a Topological Groups | |
650 | 4 | |a Global analysis | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Non-associative Rings and Algebras | |
650 | 4 | |a Topological Groups, Lie Groups | |
650 | 4 | |a Global Analysis and Analysis on Manifolds | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Lie-Gruppe |0 (DE-588)4035695-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Algebra |0 (DE-588)4130355-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lie-Algebra |0 (DE-588)4130355-6 |D s |
689 | 0 | 1 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Krasil’shchik, I. S. |e Sonstige |4 oth | |
700 | 1 | |a Litvinov, G. L. |e Sonstige |4 oth | |
700 | 1 | |a Sossinsky, A. B. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-011-5258-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859386 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153100356812800 |
---|---|
any_adam_object | |
author | Komrakov, B. P. |
author_facet | Komrakov, B. P. |
author_role | aut |
author_sort | Komrakov, B. P. |
author_variant | b p k bp bpk |
building | Verbundindex |
bvnumber | BV042423969 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165520890 (DE-599)BVBBV042423969 |
dewey-full | 512.48 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.48 |
dewey-search | 512.48 |
dewey-sort | 3512.48 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-011-5258-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03641nmm a2200601zcb4500</leader><controlfield tag="001">BV042423969</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401152587</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-011-5258-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401062121</subfield><subfield code="c">Print</subfield><subfield code="9">978-94-010-6212-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-011-5258-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165520890</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423969</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.48</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Komrakov, B. P.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lie Groups and Lie Algebras</subfield><subfield code="b">Their Representations, Generalisations and Applications</subfield><subfield code="c">edited by B. P. Komrakov, I. S. Krasil’shchik, G. L. Litvinov, A. B. Sossinsky</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VII, 447 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">433</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This collection contains papers conceptually related to the classical ideas of Sophus Lie (i.e., to Lie groups and Lie algebras). Obviously, it is impos sible to embrace all such topics in a book of reasonable size. The contents of this one reflect the scientific interests of those authors whose activities, to some extent at least, are associated with the International Sophus Lie Center. We have divided the book into five parts in accordance with the basic topics of the papers (although it can be easily seen that some of them may be attributed to several parts simultaneously). The first part (quantum mathematics) combines the papers related to the methods generated by the concepts of quantization and quantum group. The second part is devoted to the theory of hypergroups and Lie hypergroups, which is one of the most important generalizations of the classical concept of locally compact group and of Lie group. A natural harmonic analysis arises on hypergroups, while any abstract transformation of Fourier type is gen erated by some hypergroup (commutative or not). Part III contains papers on the geometry of homogeneous spaces, Lie algebras and Lie superalgebras. Classical problems of the representation theory for Lie groups, as well as for topological groups and semigroups, are discussed in the papers of Part IV. Finally, the last part of the collection relates to applications of the ideas of Sophus Lie to differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-associative Rings and Algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Analysis and Analysis on Manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Krasil’shchik, I. S.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Litvinov, G. L.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sossinsky, A. B.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-011-5258-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859386</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423969 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:14Z |
institution | BVB |
isbn | 9789401152587 9789401062121 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859386 |
oclc_num | 1165520890 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VII, 447 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Mathematics and Its Applications |
spelling | Komrakov, B. P. Verfasser aut Lie Groups and Lie Algebras Their Representations, Generalisations and Applications edited by B. P. Komrakov, I. S. Krasil’shchik, G. L. Litvinov, A. B. Sossinsky Dordrecht Springer Netherlands 1998 1 Online-Ressource (VII, 447 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 433 This collection contains papers conceptually related to the classical ideas of Sophus Lie (i.e., to Lie groups and Lie algebras). Obviously, it is impos sible to embrace all such topics in a book of reasonable size. The contents of this one reflect the scientific interests of those authors whose activities, to some extent at least, are associated with the International Sophus Lie Center. We have divided the book into five parts in accordance with the basic topics of the papers (although it can be easily seen that some of them may be attributed to several parts simultaneously). The first part (quantum mathematics) combines the papers related to the methods generated by the concepts of quantization and quantum group. The second part is devoted to the theory of hypergroups and Lie hypergroups, which is one of the most important generalizations of the classical concept of locally compact group and of Lie group. A natural harmonic analysis arises on hypergroups, while any abstract transformation of Fourier type is gen erated by some hypergroup (commutative or not). Part III contains papers on the geometry of homogeneous spaces, Lie algebras and Lie superalgebras. Classical problems of the representation theory for Lie groups, as well as for topological groups and semigroups, are discussed in the papers of Part IV. Finally, the last part of the collection relates to applications of the ideas of Sophus Lie to differential equations Mathematics Algebra Topological Groups Global analysis Differential equations, partial Non-associative Rings and Algebras Topological Groups, Lie Groups Global Analysis and Analysis on Manifolds Partial Differential Equations Applications of Mathematics Mathematik Lie-Gruppe (DE-588)4035695-4 gnd rswk-swf Lie-Algebra (DE-588)4130355-6 gnd rswk-swf Lie-Algebra (DE-588)4130355-6 s Lie-Gruppe (DE-588)4035695-4 s 1\p DE-604 Krasil’shchik, I. S. Sonstige oth Litvinov, G. L. Sonstige oth Sossinsky, A. B. Sonstige oth https://doi.org/10.1007/978-94-011-5258-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Komrakov, B. P. Lie Groups and Lie Algebras Their Representations, Generalisations and Applications Mathematics Algebra Topological Groups Global analysis Differential equations, partial Non-associative Rings and Algebras Topological Groups, Lie Groups Global Analysis and Analysis on Manifolds Partial Differential Equations Applications of Mathematics Mathematik Lie-Gruppe (DE-588)4035695-4 gnd Lie-Algebra (DE-588)4130355-6 gnd |
subject_GND | (DE-588)4035695-4 (DE-588)4130355-6 |
title | Lie Groups and Lie Algebras Their Representations, Generalisations and Applications |
title_auth | Lie Groups and Lie Algebras Their Representations, Generalisations and Applications |
title_exact_search | Lie Groups and Lie Algebras Their Representations, Generalisations and Applications |
title_full | Lie Groups and Lie Algebras Their Representations, Generalisations and Applications edited by B. P. Komrakov, I. S. Krasil’shchik, G. L. Litvinov, A. B. Sossinsky |
title_fullStr | Lie Groups and Lie Algebras Their Representations, Generalisations and Applications edited by B. P. Komrakov, I. S. Krasil’shchik, G. L. Litvinov, A. B. Sossinsky |
title_full_unstemmed | Lie Groups and Lie Algebras Their Representations, Generalisations and Applications edited by B. P. Komrakov, I. S. Krasil’shchik, G. L. Litvinov, A. B. Sossinsky |
title_short | Lie Groups and Lie Algebras |
title_sort | lie groups and lie algebras their representations generalisations and applications |
title_sub | Their Representations, Generalisations and Applications |
topic | Mathematics Algebra Topological Groups Global analysis Differential equations, partial Non-associative Rings and Algebras Topological Groups, Lie Groups Global Analysis and Analysis on Manifolds Partial Differential Equations Applications of Mathematics Mathematik Lie-Gruppe (DE-588)4035695-4 gnd Lie-Algebra (DE-588)4130355-6 gnd |
topic_facet | Mathematics Algebra Topological Groups Global analysis Differential equations, partial Non-associative Rings and Algebras Topological Groups, Lie Groups Global Analysis and Analysis on Manifolds Partial Differential Equations Applications of Mathematics Mathematik Lie-Gruppe Lie-Algebra |
url | https://doi.org/10.1007/978-94-011-5258-7 |
work_keys_str_mv | AT komrakovbp liegroupsandliealgebrastheirrepresentationsgeneralisationsandapplications AT krasilshchikis liegroupsandliealgebrastheirrepresentationsgeneralisationsandapplications AT litvinovgl liegroupsandliealgebrastheirrepresentationsgeneralisationsandapplications AT sossinskyab liegroupsandliealgebrastheirrepresentationsgeneralisationsandapplications |