Geometry of Vector Sheaves: An Axiomatic Approach to Differential Geometry Volume II: Geometry. Examples and Applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1998
|
Schriftenreihe: | Mathematics and Its Applications
439 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This two-volume monograph obtains fundamental notions and results of the standard differential geometry of smooth (CINFINITY) manifolds, without using differential calculus. Here, the sheaf-theoretic character is emphasised. This has theoretical advantages such as greater perspective, clarity and unification, but also practical benefits ranging from elementary particle physics, via gauge theories and theoretical cosmology ('differential spaces'), to non-linear PDEs (generalised functions). Thus, more general applications, which are no longer 'smooth' in the classical sense, can be coped with. The treatise might also be construed as a new systematic endeavour to confront the ever-increasing notion that the 'world around us is far from being smooth enough'. Audience: This work is intended for postgraduate students and researchers whose work involves differential geometry, global analysis, analysis on manifolds, algebraic topology, sheaf theory, cohomology, functional analysis or abstract harmonic analysis |
Beschreibung: | 1 Online-Ressource (XXIII, 438 p) |
ISBN: | 9789401150064 9789401061025 |
DOI: | 10.1007/978-94-011-5006-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423962 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1998 |||| o||u| ||||||eng d | ||
020 | |a 9789401150064 |c Online |9 978-94-011-5006-4 | ||
020 | |a 9789401061025 |c Print |9 978-94-010-6102-5 | ||
024 | 7 | |a 10.1007/978-94-011-5006-4 |2 doi | |
035 | |a (OCoLC)863685266 | ||
035 | |a (DE-599)BVBBV042423962 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516.36 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Mallios, Anastasios |e Verfasser |4 aut | |
245 | 1 | 0 | |a Geometry of Vector Sheaves |b An Axiomatic Approach to Differential Geometry Volume II: Geometry. Examples and Applications |c by Anastasios Mallios |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1998 | |
300 | |a 1 Online-Ressource (XXIII, 438 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and Its Applications |v 439 | |
500 | |a This two-volume monograph obtains fundamental notions and results of the standard differential geometry of smooth (CINFINITY) manifolds, without using differential calculus. Here, the sheaf-theoretic character is emphasised. This has theoretical advantages such as greater perspective, clarity and unification, but also practical benefits ranging from elementary particle physics, via gauge theories and theoretical cosmology ('differential spaces'), to non-linear PDEs (generalised functions). Thus, more general applications, which are no longer 'smooth' in the classical sense, can be coped with. The treatise might also be construed as a new systematic endeavour to confront the ever-increasing notion that the 'world around us is far from being smooth enough'. Audience: This work is intended for postgraduate students and researchers whose work involves differential geometry, global analysis, analysis on manifolds, algebraic topology, sheaf theory, cohomology, functional analysis or abstract harmonic analysis | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Harmonic analysis | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Global analysis | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Algebraic topology | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Global Analysis and Analysis on Manifolds | |
650 | 4 | |a Algebraic Topology | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Abstract Harmonic Analysis | |
650 | 4 | |a Mathematik | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-011-5006-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859379 |
Datensatz im Suchindex
_version_ | 1804153100325355520 |
---|---|
any_adam_object | |
author | Mallios, Anastasios |
author_facet | Mallios, Anastasios |
author_role | aut |
author_sort | Mallios, Anastasios |
author_variant | a m am |
building | Verbundindex |
bvnumber | BV042423962 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863685266 (DE-599)BVBBV042423962 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-011-5006-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02711nmm a2200505zcb4500</leader><controlfield tag="001">BV042423962</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401150064</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-011-5006-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401061025</subfield><subfield code="c">Print</subfield><subfield code="9">978-94-010-6102-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-011-5006-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863685266</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423962</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mallios, Anastasios</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometry of Vector Sheaves</subfield><subfield code="b">An Axiomatic Approach to Differential Geometry Volume II: Geometry. Examples and Applications</subfield><subfield code="c">by Anastasios Mallios</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXIII, 438 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">439</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This two-volume monograph obtains fundamental notions and results of the standard differential geometry of smooth (CINFINITY) manifolds, without using differential calculus. Here, the sheaf-theoretic character is emphasised. This has theoretical advantages such as greater perspective, clarity and unification, but also practical benefits ranging from elementary particle physics, via gauge theories and theoretical cosmology ('differential spaces'), to non-linear PDEs (generalised functions). Thus, more general applications, which are no longer 'smooth' in the classical sense, can be coped with. The treatise might also be construed as a new systematic endeavour to confront the ever-increasing notion that the 'world around us is far from being smooth enough'. Audience: This work is intended for postgraduate students and researchers whose work involves differential geometry, global analysis, analysis on manifolds, algebraic topology, sheaf theory, cohomology, functional analysis or abstract harmonic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Analysis and Analysis on Manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Abstract Harmonic Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-011-5006-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859379</subfield></datafield></record></collection> |
id | DE-604.BV042423962 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:14Z |
institution | BVB |
isbn | 9789401150064 9789401061025 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859379 |
oclc_num | 863685266 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XXIII, 438 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Mathematics and Its Applications |
spelling | Mallios, Anastasios Verfasser aut Geometry of Vector Sheaves An Axiomatic Approach to Differential Geometry Volume II: Geometry. Examples and Applications by Anastasios Mallios Dordrecht Springer Netherlands 1998 1 Online-Ressource (XXIII, 438 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 439 This two-volume monograph obtains fundamental notions and results of the standard differential geometry of smooth (CINFINITY) manifolds, without using differential calculus. Here, the sheaf-theoretic character is emphasised. This has theoretical advantages such as greater perspective, clarity and unification, but also practical benefits ranging from elementary particle physics, via gauge theories and theoretical cosmology ('differential spaces'), to non-linear PDEs (generalised functions). Thus, more general applications, which are no longer 'smooth' in the classical sense, can be coped with. The treatise might also be construed as a new systematic endeavour to confront the ever-increasing notion that the 'world around us is far from being smooth enough'. Audience: This work is intended for postgraduate students and researchers whose work involves differential geometry, global analysis, analysis on manifolds, algebraic topology, sheaf theory, cohomology, functional analysis or abstract harmonic analysis Mathematics Harmonic analysis Functional analysis Global analysis Global differential geometry Algebraic topology Differential Geometry Global Analysis and Analysis on Manifolds Algebraic Topology Functional Analysis Abstract Harmonic Analysis Mathematik https://doi.org/10.1007/978-94-011-5006-4 Verlag Volltext |
spellingShingle | Mallios, Anastasios Geometry of Vector Sheaves An Axiomatic Approach to Differential Geometry Volume II: Geometry. Examples and Applications Mathematics Harmonic analysis Functional analysis Global analysis Global differential geometry Algebraic topology Differential Geometry Global Analysis and Analysis on Manifolds Algebraic Topology Functional Analysis Abstract Harmonic Analysis Mathematik |
title | Geometry of Vector Sheaves An Axiomatic Approach to Differential Geometry Volume II: Geometry. Examples and Applications |
title_auth | Geometry of Vector Sheaves An Axiomatic Approach to Differential Geometry Volume II: Geometry. Examples and Applications |
title_exact_search | Geometry of Vector Sheaves An Axiomatic Approach to Differential Geometry Volume II: Geometry. Examples and Applications |
title_full | Geometry of Vector Sheaves An Axiomatic Approach to Differential Geometry Volume II: Geometry. Examples and Applications by Anastasios Mallios |
title_fullStr | Geometry of Vector Sheaves An Axiomatic Approach to Differential Geometry Volume II: Geometry. Examples and Applications by Anastasios Mallios |
title_full_unstemmed | Geometry of Vector Sheaves An Axiomatic Approach to Differential Geometry Volume II: Geometry. Examples and Applications by Anastasios Mallios |
title_short | Geometry of Vector Sheaves |
title_sort | geometry of vector sheaves an axiomatic approach to differential geometry volume ii geometry examples and applications |
title_sub | An Axiomatic Approach to Differential Geometry Volume II: Geometry. Examples and Applications |
topic | Mathematics Harmonic analysis Functional analysis Global analysis Global differential geometry Algebraic topology Differential Geometry Global Analysis and Analysis on Manifolds Algebraic Topology Functional Analysis Abstract Harmonic Analysis Mathematik |
topic_facet | Mathematics Harmonic analysis Functional analysis Global analysis Global differential geometry Algebraic topology Differential Geometry Global Analysis and Analysis on Manifolds Algebraic Topology Functional Analysis Abstract Harmonic Analysis Mathematik |
url | https://doi.org/10.1007/978-94-011-5006-4 |
work_keys_str_mv | AT malliosanastasios geometryofvectorsheavesanaxiomaticapproachtodifferentialgeometryvolumeiigeometryexamplesandapplications |