Hyperbolic Functional Differential Inequalities and Applications:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1999
|
Schriftenreihe: | Mathematics and Its Applications
486 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book is intended as a self-contained exposition of hyperbolic functional differential inequalities and their applications. Its aim is to give a systematic and unified presentation of recent developments of the following problems: (i) functional differential inequalities generated by initial and mixed problems, (ii) existence theory of local and global solutions, (iii) functional integral equations generated by hyperbolic equations, (iv) numerical method of lines for hyperbolic problems, (v) difference methods for initial and initial-boundary value problems. Beside classical solutions, the following classes of weak solutions are treated: Caratheodory solutions for quasilinear equations, entropy solutions and viscosity solutions for nonlinear problems and solutions in the Friedrichs sense for almost linear equations. The theory of difference and differential difference equations generated by original problems is discussed and its applications to the constructions of numerical methods for functional differential problems are presented. The monograph is intended for different groups of scientists. Pure mathematicians and graduate students will find an advanced theory of functional differential problems. Applied mathematicians and research engineers will find numerical algorithms for many hyperbolic problems. The classical theory of partial differential inequalities has been described extensively in the monographs [138, 140, 195, 225). As is well known, they found applications in differential problems. The basic examples of such questions are: estimates of solutions of partial equations, estimates of the domain of the existence of solutions, criteria of uniqueness and estimates of the error of approximate solutions |
Beschreibung: | 1 Online-Ressource (XIII, 306 p) |
ISBN: | 9789401146357 9789401059572 |
DOI: | 10.1007/978-94-011-4635-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423954 | ||
003 | DE-604 | ||
005 | 20180109 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1999 |||| o||u| ||||||eng d | ||
020 | |a 9789401146357 |c Online |9 978-94-011-4635-7 | ||
020 | |a 9789401059572 |c Print |9 978-94-010-5957-2 | ||
024 | 7 | |a 10.1007/978-94-011-4635-7 |2 doi | |
035 | |a (OCoLC)879622806 | ||
035 | |a (DE-599)BVBBV042423954 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.353 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Kamont, Zdzislaw |e Verfasser |4 aut | |
245 | 1 | 0 | |a Hyperbolic Functional Differential Inequalities and Applications |c by Zdzislaw Kamont |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1999 | |
300 | |a 1 Online-Ressource (XIII, 306 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematics and Its Applications |v 486 | |
500 | |a This book is intended as a self-contained exposition of hyperbolic functional differential inequalities and their applications. Its aim is to give a systematic and unified presentation of recent developments of the following problems: (i) functional differential inequalities generated by initial and mixed problems, (ii) existence theory of local and global solutions, (iii) functional integral equations generated by hyperbolic equations, (iv) numerical method of lines for hyperbolic problems, (v) difference methods for initial and initial-boundary value problems. Beside classical solutions, the following classes of weak solutions are treated: Caratheodory solutions for quasilinear equations, entropy solutions and viscosity solutions for nonlinear problems and solutions in the Friedrichs sense for almost linear equations. The theory of difference and differential difference equations generated by original problems is discussed and its applications to the constructions of numerical methods for functional differential problems are presented. The monograph is intended for different groups of scientists. Pure mathematicians and graduate students will find an advanced theory of functional differential problems. Applied mathematicians and research engineers will find numerical algorithms for many hyperbolic problems. The classical theory of partial differential inequalities has been described extensively in the monographs [138, 140, 195, 225). As is well known, they found applications in differential problems. The basic examples of such questions are: estimates of solutions of partial equations, estimates of the domain of the existence of solutions, criteria of uniqueness and estimates of the error of approximate solutions | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Computer science / Mathematics | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Computational Mathematics and Numerical Analysis | |
650 | 4 | |a Informatik | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Differentialungleichung |0 (DE-588)4149785-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hyperbolische Differentialgleichung |0 (DE-588)4131213-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionalungleichung |0 (DE-588)4155681-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Differentialungleichung |0 (DE-588)4149785-5 |D s |
689 | 0 | 1 | |a Funktionalungleichung |0 (DE-588)4155681-1 |D s |
689 | 0 | 2 | |a Hyperbolische Differentialgleichung |0 (DE-588)4131213-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
830 | 0 | |a Mathematics and Its Applications |v 486 |w (DE-604)BV008163334 |9 486 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-011-4635-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859371 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153100313821184 |
---|---|
any_adam_object | |
author | Kamont, Zdzislaw |
author_facet | Kamont, Zdzislaw |
author_role | aut |
author_sort | Kamont, Zdzislaw |
author_variant | z k zk |
building | Verbundindex |
bvnumber | BV042423954 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879622806 (DE-599)BVBBV042423954 |
dewey-full | 515.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.353 |
dewey-search | 515.353 |
dewey-sort | 3515.353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-011-4635-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03838nmm a2200553zcb4500</leader><controlfield tag="001">BV042423954</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180109 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401146357</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-011-4635-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401059572</subfield><subfield code="c">Print</subfield><subfield code="9">978-94-010-5957-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-011-4635-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879622806</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423954</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kamont, Zdzislaw</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hyperbolic Functional Differential Inequalities and Applications</subfield><subfield code="c">by Zdzislaw Kamont</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 306 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">486</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book is intended as a self-contained exposition of hyperbolic functional differential inequalities and their applications. Its aim is to give a systematic and unified presentation of recent developments of the following problems: (i) functional differential inequalities generated by initial and mixed problems, (ii) existence theory of local and global solutions, (iii) functional integral equations generated by hyperbolic equations, (iv) numerical method of lines for hyperbolic problems, (v) difference methods for initial and initial-boundary value problems. Beside classical solutions, the following classes of weak solutions are treated: Caratheodory solutions for quasilinear equations, entropy solutions and viscosity solutions for nonlinear problems and solutions in the Friedrichs sense for almost linear equations. The theory of difference and differential difference equations generated by original problems is discussed and its applications to the constructions of numerical methods for functional differential problems are presented. The monograph is intended for different groups of scientists. Pure mathematicians and graduate students will find an advanced theory of functional differential problems. Applied mathematicians and research engineers will find numerical algorithms for many hyperbolic problems. The classical theory of partial differential inequalities has been described extensively in the monographs [138, 140, 195, 225). As is well known, they found applications in differential problems. The basic examples of such questions are: estimates of solutions of partial equations, estimates of the domain of the existence of solutions, criteria of uniqueness and estimates of the error of approximate solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Mathematics and Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialungleichung</subfield><subfield code="0">(DE-588)4149785-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4131213-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionalungleichung</subfield><subfield code="0">(DE-588)4155681-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialungleichung</subfield><subfield code="0">(DE-588)4149785-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Funktionalungleichung</subfield><subfield code="0">(DE-588)4155681-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4131213-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">486</subfield><subfield code="w">(DE-604)BV008163334</subfield><subfield code="9">486</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-011-4635-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859371</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423954 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:14Z |
institution | BVB |
isbn | 9789401146357 9789401059572 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859371 |
oclc_num | 879622806 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIII, 306 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Springer Netherlands |
record_format | marc |
series | Mathematics and Its Applications |
series2 | Mathematics and Its Applications |
spelling | Kamont, Zdzislaw Verfasser aut Hyperbolic Functional Differential Inequalities and Applications by Zdzislaw Kamont Dordrecht Springer Netherlands 1999 1 Online-Ressource (XIII, 306 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 486 This book is intended as a self-contained exposition of hyperbolic functional differential inequalities and their applications. Its aim is to give a systematic and unified presentation of recent developments of the following problems: (i) functional differential inequalities generated by initial and mixed problems, (ii) existence theory of local and global solutions, (iii) functional integral equations generated by hyperbolic equations, (iv) numerical method of lines for hyperbolic problems, (v) difference methods for initial and initial-boundary value problems. Beside classical solutions, the following classes of weak solutions are treated: Caratheodory solutions for quasilinear equations, entropy solutions and viscosity solutions for nonlinear problems and solutions in the Friedrichs sense for almost linear equations. The theory of difference and differential difference equations generated by original problems is discussed and its applications to the constructions of numerical methods for functional differential problems are presented. The monograph is intended for different groups of scientists. Pure mathematicians and graduate students will find an advanced theory of functional differential problems. Applied mathematicians and research engineers will find numerical algorithms for many hyperbolic problems. The classical theory of partial differential inequalities has been described extensively in the monographs [138, 140, 195, 225). As is well known, they found applications in differential problems. The basic examples of such questions are: estimates of solutions of partial equations, estimates of the domain of the existence of solutions, criteria of uniqueness and estimates of the error of approximate solutions Mathematics Differential equations, partial Computer science / Mathematics Partial Differential Equations Computational Mathematics and Numerical Analysis Informatik Mathematik Differentialungleichung (DE-588)4149785-5 gnd rswk-swf Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd rswk-swf Funktionalungleichung (DE-588)4155681-1 gnd rswk-swf Differentialungleichung (DE-588)4149785-5 s Funktionalungleichung (DE-588)4155681-1 s Hyperbolische Differentialgleichung (DE-588)4131213-2 s 1\p DE-604 Mathematics and Its Applications 486 (DE-604)BV008163334 486 https://doi.org/10.1007/978-94-011-4635-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kamont, Zdzislaw Hyperbolic Functional Differential Inequalities and Applications Mathematics and Its Applications Mathematics Differential equations, partial Computer science / Mathematics Partial Differential Equations Computational Mathematics and Numerical Analysis Informatik Mathematik Differentialungleichung (DE-588)4149785-5 gnd Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd Funktionalungleichung (DE-588)4155681-1 gnd |
subject_GND | (DE-588)4149785-5 (DE-588)4131213-2 (DE-588)4155681-1 |
title | Hyperbolic Functional Differential Inequalities and Applications |
title_auth | Hyperbolic Functional Differential Inequalities and Applications |
title_exact_search | Hyperbolic Functional Differential Inequalities and Applications |
title_full | Hyperbolic Functional Differential Inequalities and Applications by Zdzislaw Kamont |
title_fullStr | Hyperbolic Functional Differential Inequalities and Applications by Zdzislaw Kamont |
title_full_unstemmed | Hyperbolic Functional Differential Inequalities and Applications by Zdzislaw Kamont |
title_short | Hyperbolic Functional Differential Inequalities and Applications |
title_sort | hyperbolic functional differential inequalities and applications |
topic | Mathematics Differential equations, partial Computer science / Mathematics Partial Differential Equations Computational Mathematics and Numerical Analysis Informatik Mathematik Differentialungleichung (DE-588)4149785-5 gnd Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd Funktionalungleichung (DE-588)4155681-1 gnd |
topic_facet | Mathematics Differential equations, partial Computer science / Mathematics Partial Differential Equations Computational Mathematics and Numerical Analysis Informatik Mathematik Differentialungleichung Hyperbolische Differentialgleichung Funktionalungleichung |
url | https://doi.org/10.1007/978-94-011-4635-7 |
volume_link | (DE-604)BV008163334 |
work_keys_str_mv | AT kamontzdzislaw hyperbolicfunctionaldifferentialinequalitiesandapplications |