Geometrical Methods in Variational Problems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1999
|
Schriftenreihe: | Mathematics and Its Applications
485 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Since the building of all the Universe is perfect and is created by the wisdom Creator, nothing arises in the Universe in which one cannot see the sense of some maximum or minimUm Euler God moves the Universe along geometrical lines Plato Mathematical models of most closed physical systems are based on variational principles, i.e., it is postulated that equations describing the evolution of a system are the Euler-Lagrange equations of a certain functional. In this connection, variational methods are one of the basic tools for studying many problems of natural sciences. The first problems related to the search for extrema appeared as far back as in ancient mathematics. They go back to Archimedes, Appolonius, and Euclid. In many respects, the problems of seeking maxima and minima have stimulated the creation of differential calculus; the variational prin ciples of optics and mechanics, which were discovered in the seventeenth and eighteenth centuries, gave impetus to an intensive development of the calculus of variations. In one way or another, variational problems were of interest to such giants of natural sciences as Fermat, Newton, Descartes, Euler, Huygens, 1. Bernoulli, J. Bernoulli, Legendre, Jacobi, Kepler, Lagrange, and Weierstrass |
Beschreibung: | 1 Online-Ressource (XVI, 543 p) |
ISBN: | 9789401146296 9789401059558 |
DOI: | 10.1007/978-94-011-4629-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423953 | ||
003 | DE-604 | ||
005 | 20170919 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1999 |||| o||u| ||||||eng d | ||
020 | |a 9789401146296 |c Online |9 978-94-011-4629-6 | ||
020 | |a 9789401059558 |c Print |9 978-94-010-5955-8 | ||
024 | 7 | |a 10.1007/978-94-011-4629-6 |2 doi | |
035 | |a (OCoLC)1184411535 | ||
035 | |a (DE-599)BVBBV042423953 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.64 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Bobylev, N. A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Geometrical Methods in Variational Problems |c by N. A. Bobylev, S. V. Emel'yanov, S. K. Korovin |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1999 | |
300 | |a 1 Online-Ressource (XVI, 543 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematics and Its Applications |v 485 | |
500 | |a Since the building of all the Universe is perfect and is created by the wisdom Creator, nothing arises in the Universe in which one cannot see the sense of some maximum or minimUm Euler God moves the Universe along geometrical lines Plato Mathematical models of most closed physical systems are based on variational principles, i.e., it is postulated that equations describing the evolution of a system are the Euler-Lagrange equations of a certain functional. In this connection, variational methods are one of the basic tools for studying many problems of natural sciences. The first problems related to the search for extrema appeared as far back as in ancient mathematics. They go back to Archimedes, Appolonius, and Euclid. In many respects, the problems of seeking maxima and minima have stimulated the creation of differential calculus; the variational prin ciples of optics and mechanics, which were discovered in the seventeenth and eighteenth centuries, gave impetus to an intensive development of the calculus of variations. In one way or another, variational problems were of interest to such giants of natural sciences as Fermat, Newton, Descartes, Euler, Huygens, 1. Bernoulli, J. Bernoulli, Legendre, Jacobi, Kepler, Lagrange, and Weierstrass | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis | |
650 | 4 | |a Differential Equations | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Calculus of Variations and Optimal Control; Optimization | |
650 | 4 | |a Optimization | |
650 | 4 | |a Global Analysis and Analysis on Manifolds | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Ordinary Differential Equations | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Variationsproblem |0 (DE-588)4187419-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrische Methode |0 (DE-588)4156715-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Variationsproblem |0 (DE-588)4187419-5 |D s |
689 | 0 | 1 | |a Geometrische Methode |0 (DE-588)4156715-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Emel'yanov, S. V. |e Sonstige |4 oth | |
700 | 1 | |a Korovin, S. K. |e Sonstige |4 oth | |
830 | 0 | |a Mathematics and Its Applications |v 485 |w (DE-604)BV008163334 |9 485 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-011-4629-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859370 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153100320112640 |
---|---|
any_adam_object | |
author | Bobylev, N. A. |
author_facet | Bobylev, N. A. |
author_role | aut |
author_sort | Bobylev, N. A. |
author_variant | n a b na nab |
building | Verbundindex |
bvnumber | BV042423953 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184411535 (DE-599)BVBBV042423953 |
dewey-full | 515.64 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.64 |
dewey-search | 515.64 |
dewey-sort | 3515.64 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-011-4629-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03463nmm a2200601zcb4500</leader><controlfield tag="001">BV042423953</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170919 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401146296</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-011-4629-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401059558</subfield><subfield code="c">Print</subfield><subfield code="9">978-94-010-5955-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-011-4629-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184411535</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423953</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.64</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bobylev, N. A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometrical Methods in Variational Problems</subfield><subfield code="c">by N. A. Bobylev, S. V. Emel'yanov, S. K. Korovin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 543 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">485</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Since the building of all the Universe is perfect and is created by the wisdom Creator, nothing arises in the Universe in which one cannot see the sense of some maximum or minimUm Euler God moves the Universe along geometrical lines Plato Mathematical models of most closed physical systems are based on variational principles, i.e., it is postulated that equations describing the evolution of a system are the Euler-Lagrange equations of a certain functional. In this connection, variational methods are one of the basic tools for studying many problems of natural sciences. The first problems related to the search for extrema appeared as far back as in ancient mathematics. They go back to Archimedes, Appolonius, and Euclid. In many respects, the problems of seeking maxima and minima have stimulated the creation of differential calculus; the variational prin ciples of optics and mechanics, which were discovered in the seventeenth and eighteenth centuries, gave impetus to an intensive development of the calculus of variations. In one way or another, variational problems were of interest to such giants of natural sciences as Fermat, Newton, Descartes, Euler, Huygens, 1. Bernoulli, J. Bernoulli, Legendre, Jacobi, Kepler, Lagrange, and Weierstrass</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Analysis and Analysis on Manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordinary Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Variationsproblem</subfield><subfield code="0">(DE-588)4187419-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Methode</subfield><subfield code="0">(DE-588)4156715-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Variationsproblem</subfield><subfield code="0">(DE-588)4187419-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geometrische Methode</subfield><subfield code="0">(DE-588)4156715-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Emel'yanov, S. V.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Korovin, S. K.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">485</subfield><subfield code="w">(DE-604)BV008163334</subfield><subfield code="9">485</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-011-4629-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859370</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423953 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:14Z |
institution | BVB |
isbn | 9789401146296 9789401059558 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859370 |
oclc_num | 1184411535 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVI, 543 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Springer Netherlands |
record_format | marc |
series | Mathematics and Its Applications |
series2 | Mathematics and Its Applications |
spelling | Bobylev, N. A. Verfasser aut Geometrical Methods in Variational Problems by N. A. Bobylev, S. V. Emel'yanov, S. K. Korovin Dordrecht Springer Netherlands 1999 1 Online-Ressource (XVI, 543 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 485 Since the building of all the Universe is perfect and is created by the wisdom Creator, nothing arises in the Universe in which one cannot see the sense of some maximum or minimUm Euler God moves the Universe along geometrical lines Plato Mathematical models of most closed physical systems are based on variational principles, i.e., it is postulated that equations describing the evolution of a system are the Euler-Lagrange equations of a certain functional. In this connection, variational methods are one of the basic tools for studying many problems of natural sciences. The first problems related to the search for extrema appeared as far back as in ancient mathematics. They go back to Archimedes, Appolonius, and Euclid. In many respects, the problems of seeking maxima and minima have stimulated the creation of differential calculus; the variational prin ciples of optics and mechanics, which were discovered in the seventeenth and eighteenth centuries, gave impetus to an intensive development of the calculus of variations. In one way or another, variational problems were of interest to such giants of natural sciences as Fermat, Newton, Descartes, Euler, Huygens, 1. Bernoulli, J. Bernoulli, Legendre, Jacobi, Kepler, Lagrange, and Weierstrass Mathematics Global analysis Differential Equations Differential equations, partial Mathematical optimization Calculus of Variations and Optimal Control; Optimization Optimization Global Analysis and Analysis on Manifolds Partial Differential Equations Ordinary Differential Equations Mathematik Variationsproblem (DE-588)4187419-5 gnd rswk-swf Geometrische Methode (DE-588)4156715-8 gnd rswk-swf Variationsproblem (DE-588)4187419-5 s Geometrische Methode (DE-588)4156715-8 s 1\p DE-604 Emel'yanov, S. V. Sonstige oth Korovin, S. K. Sonstige oth Mathematics and Its Applications 485 (DE-604)BV008163334 485 https://doi.org/10.1007/978-94-011-4629-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bobylev, N. A. Geometrical Methods in Variational Problems Mathematics and Its Applications Mathematics Global analysis Differential Equations Differential equations, partial Mathematical optimization Calculus of Variations and Optimal Control; Optimization Optimization Global Analysis and Analysis on Manifolds Partial Differential Equations Ordinary Differential Equations Mathematik Variationsproblem (DE-588)4187419-5 gnd Geometrische Methode (DE-588)4156715-8 gnd |
subject_GND | (DE-588)4187419-5 (DE-588)4156715-8 |
title | Geometrical Methods in Variational Problems |
title_auth | Geometrical Methods in Variational Problems |
title_exact_search | Geometrical Methods in Variational Problems |
title_full | Geometrical Methods in Variational Problems by N. A. Bobylev, S. V. Emel'yanov, S. K. Korovin |
title_fullStr | Geometrical Methods in Variational Problems by N. A. Bobylev, S. V. Emel'yanov, S. K. Korovin |
title_full_unstemmed | Geometrical Methods in Variational Problems by N. A. Bobylev, S. V. Emel'yanov, S. K. Korovin |
title_short | Geometrical Methods in Variational Problems |
title_sort | geometrical methods in variational problems |
topic | Mathematics Global analysis Differential Equations Differential equations, partial Mathematical optimization Calculus of Variations and Optimal Control; Optimization Optimization Global Analysis and Analysis on Manifolds Partial Differential Equations Ordinary Differential Equations Mathematik Variationsproblem (DE-588)4187419-5 gnd Geometrische Methode (DE-588)4156715-8 gnd |
topic_facet | Mathematics Global analysis Differential Equations Differential equations, partial Mathematical optimization Calculus of Variations and Optimal Control; Optimization Optimization Global Analysis and Analysis on Manifolds Partial Differential Equations Ordinary Differential Equations Mathematik Variationsproblem Geometrische Methode |
url | https://doi.org/10.1007/978-94-011-4629-6 |
volume_link | (DE-604)BV008163334 |
work_keys_str_mv | AT bobylevna geometricalmethodsinvariationalproblems AT emelyanovsv geometricalmethodsinvariationalproblems AT korovinsk geometricalmethodsinvariationalproblems |