Singular Quadratic Forms in Perturbation Theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1999
|
Schriftenreihe: | Mathematics and Its Applications
474 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The notion of singular quadratic form appears in mathematical physics as a tool for the investigation of formal expressions corresponding to perturbations devoid of operator sense. Numerous physical models are based on the use of Hamiltonians containing perturbation terms with singular properties. Typical examples of such expressions are Schrödinger operators with O-potentials (-~ + AD) and Hamiltonians in quantum field theory with perturbations given in terms of operators of creation and annihilation (P( |
Beschreibung: | 1 Online-Ressource (VIII, 312 p) |
ISBN: | 9789401146197 9789401059527 |
DOI: | 10.1007/978-94-011-4619-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423951 | ||
003 | DE-604 | ||
005 | 20170922 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1999 |||| o||u| ||||||eng d | ||
020 | |a 9789401146197 |c Online |9 978-94-011-4619-7 | ||
020 | |a 9789401059527 |c Print |9 978-94-010-5952-7 | ||
024 | 7 | |a 10.1007/978-94-011-4619-7 |2 doi | |
035 | |a (OCoLC)1184374309 | ||
035 | |a (DE-599)BVBBV042423951 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.7 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Košmanenko, Volodymyr |d 20. Jht. |e Verfasser |0 (DE-588)1089275188 |4 aut | |
245 | 1 | 0 | |a Singular Quadratic Forms in Perturbation Theory |c by Volodymyr Koshmanenko |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1999 | |
300 | |a 1 Online-Ressource (VIII, 312 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematics and Its Applications |v 474 | |
500 | |a The notion of singular quadratic form appears in mathematical physics as a tool for the investigation of formal expressions corresponding to perturbations devoid of operator sense. Numerous physical models are based on the use of Hamiltonians containing perturbation terms with singular properties. Typical examples of such expressions are Schrödinger operators with O-potentials (-~ + AD) and Hamiltonians in quantum field theory with perturbations given in terms of operators of creation and annihilation (P( | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Operator theory | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Operator Theory | |
650 | 4 | |a Elementary Particles, Quantum Field Theory | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Quantentheorie | |
650 | 0 | 7 | |a Störungstheorie |0 (DE-588)4128420-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quadratische Form |0 (DE-588)4128297-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Selbstadjungierter Operator |0 (DE-588)4180810-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quadratische Form |0 (DE-588)4128297-8 |D s |
689 | 0 | 1 | |a Selbstadjungierter Operator |0 (DE-588)4180810-1 |D s |
689 | 0 | 2 | |a Störungstheorie |0 (DE-588)4128420-3 |D s |
689 | 0 | 3 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
830 | 0 | |a Mathematics and Its Applications |v 474 |w (DE-604)BV008163334 |9 474 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-011-4619-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859368 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153100313821184 |
---|---|
any_adam_object | |
author | Košmanenko, Volodymyr 20. Jht |
author_GND | (DE-588)1089275188 |
author_facet | Košmanenko, Volodymyr 20. Jht |
author_role | aut |
author_sort | Košmanenko, Volodymyr 20. Jht |
author_variant | v k vk |
building | Verbundindex |
bvnumber | BV042423951 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184374309 (DE-599)BVBBV042423951 |
dewey-full | 515.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.7 |
dewey-search | 515.7 |
dewey-sort | 3515.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-011-4619-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02740nmm a2200601zcb4500</leader><controlfield tag="001">BV042423951</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170922 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401146197</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-011-4619-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401059527</subfield><subfield code="c">Print</subfield><subfield code="9">978-94-010-5952-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-011-4619-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184374309</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423951</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Košmanenko, Volodymyr</subfield><subfield code="d">20. Jht.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1089275188</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Singular Quadratic Forms in Perturbation Theory</subfield><subfield code="c">by Volodymyr Koshmanenko</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 312 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">474</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The notion of singular quadratic form appears in mathematical physics as a tool for the investigation of formal expressions corresponding to perturbations devoid of operator sense. Numerous physical models are based on the use of Hamiltonians containing perturbation terms with singular properties. Typical examples of such expressions are Schrödinger operators with O-potentials (-~ + AD) and Hamiltonians in quantum field theory with perturbations given in terms of operators of creation and annihilation (P(</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elementary Particles, Quantum Field Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Störungstheorie</subfield><subfield code="0">(DE-588)4128420-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quadratische Form</subfield><subfield code="0">(DE-588)4128297-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Selbstadjungierter Operator</subfield><subfield code="0">(DE-588)4180810-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quadratische Form</subfield><subfield code="0">(DE-588)4128297-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Selbstadjungierter Operator</subfield><subfield code="0">(DE-588)4180810-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Störungstheorie</subfield><subfield code="0">(DE-588)4128420-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">474</subfield><subfield code="w">(DE-604)BV008163334</subfield><subfield code="9">474</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-011-4619-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859368</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423951 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:14Z |
institution | BVB |
isbn | 9789401146197 9789401059527 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859368 |
oclc_num | 1184374309 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 312 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Springer Netherlands |
record_format | marc |
series | Mathematics and Its Applications |
series2 | Mathematics and Its Applications |
spelling | Košmanenko, Volodymyr 20. Jht. Verfasser (DE-588)1089275188 aut Singular Quadratic Forms in Perturbation Theory by Volodymyr Koshmanenko Dordrecht Springer Netherlands 1999 1 Online-Ressource (VIII, 312 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 474 The notion of singular quadratic form appears in mathematical physics as a tool for the investigation of formal expressions corresponding to perturbations devoid of operator sense. Numerous physical models are based on the use of Hamiltonians containing perturbation terms with singular properties. Typical examples of such expressions are Schrödinger operators with O-potentials (-~ + AD) and Hamiltonians in quantum field theory with perturbations given in terms of operators of creation and annihilation (P( Mathematics Functional analysis Operator theory Quantum theory Functional Analysis Operator Theory Elementary Particles, Quantum Field Theory Mathematik Quantentheorie Störungstheorie (DE-588)4128420-3 gnd rswk-swf Quadratische Form (DE-588)4128297-8 gnd rswk-swf Selbstadjungierter Operator (DE-588)4180810-1 gnd rswk-swf Quantenfeldtheorie (DE-588)4047984-5 gnd rswk-swf Quadratische Form (DE-588)4128297-8 s Selbstadjungierter Operator (DE-588)4180810-1 s Störungstheorie (DE-588)4128420-3 s Quantenfeldtheorie (DE-588)4047984-5 s 1\p DE-604 Mathematics and Its Applications 474 (DE-604)BV008163334 474 https://doi.org/10.1007/978-94-011-4619-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Košmanenko, Volodymyr 20. Jht Singular Quadratic Forms in Perturbation Theory Mathematics and Its Applications Mathematics Functional analysis Operator theory Quantum theory Functional Analysis Operator Theory Elementary Particles, Quantum Field Theory Mathematik Quantentheorie Störungstheorie (DE-588)4128420-3 gnd Quadratische Form (DE-588)4128297-8 gnd Selbstadjungierter Operator (DE-588)4180810-1 gnd Quantenfeldtheorie (DE-588)4047984-5 gnd |
subject_GND | (DE-588)4128420-3 (DE-588)4128297-8 (DE-588)4180810-1 (DE-588)4047984-5 |
title | Singular Quadratic Forms in Perturbation Theory |
title_auth | Singular Quadratic Forms in Perturbation Theory |
title_exact_search | Singular Quadratic Forms in Perturbation Theory |
title_full | Singular Quadratic Forms in Perturbation Theory by Volodymyr Koshmanenko |
title_fullStr | Singular Quadratic Forms in Perturbation Theory by Volodymyr Koshmanenko |
title_full_unstemmed | Singular Quadratic Forms in Perturbation Theory by Volodymyr Koshmanenko |
title_short | Singular Quadratic Forms in Perturbation Theory |
title_sort | singular quadratic forms in perturbation theory |
topic | Mathematics Functional analysis Operator theory Quantum theory Functional Analysis Operator Theory Elementary Particles, Quantum Field Theory Mathematik Quantentheorie Störungstheorie (DE-588)4128420-3 gnd Quadratische Form (DE-588)4128297-8 gnd Selbstadjungierter Operator (DE-588)4180810-1 gnd Quantenfeldtheorie (DE-588)4047984-5 gnd |
topic_facet | Mathematics Functional analysis Operator theory Quantum theory Functional Analysis Operator Theory Elementary Particles, Quantum Field Theory Mathematik Quantentheorie Störungstheorie Quadratische Form Selbstadjungierter Operator Quantenfeldtheorie |
url | https://doi.org/10.1007/978-94-011-4619-7 |
volume_link | (DE-604)BV008163334 |
work_keys_str_mv | AT kosmanenkovolodymyr singularquadraticformsinperturbationtheory |