Functional Equations and Inequalities:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
2000
|
Schriftenreihe: | Mathematics and Its Applications
518 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Functional Equations and Inequalities provides an extensive study of some of the most important topics of current interest in functional equations and inequalities. Subjects dealt with include: a Pythagorean functional equation, a functional definition of trigonometric functions, the functional equation of the square root spiral, a conditional Cauchy functional equation, an iterative functional equation, the Hille-type functional equation, the polynomial-like iterative functional equation, distribution of zeros and inequalities for zeros of algebraic polynomials, a qualitative study of Lobachevsky's complex functional equation, functional inequalities in special classes of functions, replicativity and function spaces, normal distributions, some difference equations, finite sums decompositions of functions, harmonic functions, set-valued quasiconvex functions, the problem of expressibility in some extensions of free groups, Aleksandrov problem and mappings which preserve distances, Ulam's problem, stability of some functional equation for generalized trigonometric functions, Hyers-Ulam stability of Hosszil's equation, superstability of a functional equation, and some demand functions in a duopoly market with advertising. It is a pleasure to express my deepest appreciation to all the mathematicians who contributed to this volume. Finally, we wish to acknowledge the superb assistance provided by the staff of Kluwer Academic Publishers. June 2000 Themistocles M. Rassias xi ON THE STABILITY OF A FUNCTIONAL EQUATION FOR GENERALIZED TRIGONOMETRIC FUNCTIONS ROMAN BADORA Instytut Matematyki, Uniwersytet Slaski, ul. Bankowa 14, PL-40-007 Katowice, Poland, e-mail: robadora@gate. math. us. edu. pl Abstract. In the present paper the stability result concerning a functional equation for generalized trigonometric functions is presented. Z. |
Beschreibung: | 1 Online-Ressource (XI, 336 p) |
ISBN: | 9789401143417 9789401058698 |
DOI: | 10.1007/978-94-011-4341-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423938 | ||
003 | DE-604 | ||
005 | 20160218 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2000 |||| o||u| ||||||eng d | ||
020 | |a 9789401143417 |c Online |9 978-94-011-4341-7 | ||
020 | |a 9789401058698 |c Print |9 978-94-010-5869-8 | ||
024 | 7 | |a 10.1007/978-94-011-4341-7 |2 doi | |
035 | |a (OCoLC)1184309317 | ||
035 | |a (DE-599)BVBBV042423938 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.625 |2 23 | |
082 | 0 | |a 515.75 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Rassias, Themistocles M. |d 1951- |e Verfasser |0 (DE-588)120510057 |4 aut | |
245 | 1 | 0 | |a Functional Equations and Inequalities |c by Themistocles M. Rassias |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 2000 | |
300 | |a 1 Online-Ressource (XI, 336 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and Its Applications |v 518 | |
500 | |a Functional Equations and Inequalities provides an extensive study of some of the most important topics of current interest in functional equations and inequalities. Subjects dealt with include: a Pythagorean functional equation, a functional definition of trigonometric functions, the functional equation of the square root spiral, a conditional Cauchy functional equation, an iterative functional equation, the Hille-type functional equation, the polynomial-like iterative functional equation, distribution of zeros and inequalities for zeros of algebraic polynomials, a qualitative study of Lobachevsky's complex functional equation, functional inequalities in special classes of functions, replicativity and function spaces, normal distributions, some difference equations, finite sums decompositions of functions, harmonic functions, set-valued quasiconvex functions, the problem of expressibility in some extensions of free groups, Aleksandrov problem and mappings which preserve distances, Ulam's problem, stability of some functional equation for generalized trigonometric functions, Hyers-Ulam stability of Hosszil's equation, superstability of a functional equation, and some demand functions in a duopoly market with advertising. It is a pleasure to express my deepest appreciation to all the mathematicians who contributed to this volume. Finally, we wish to acknowledge the superb assistance provided by the staff of Kluwer Academic Publishers. June 2000 Themistocles M. Rassias xi ON THE STABILITY OF A FUNCTIONAL EQUATION FOR GENERALIZED TRIGONOMETRIC FUNCTIONS ROMAN BADORA Instytut Matematyki, Uniwersytet Slaski, ul. Bankowa 14, PL-40-007 Katowice, Poland, e-mail: robadora@gate. math. us. edu. pl Abstract. In the present paper the stability result concerning a functional equation for generalized trigonometric functions is presented. Z. | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Functional equations | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Functions of complex variables | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Difference and Functional Equations | |
650 | 4 | |a Approximations and Expansions | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Functions of a Complex Variable | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Funktionalgleichung |0 (DE-588)4018923-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionalungleichung |0 (DE-588)4155681-1 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Funktionalgleichung |0 (DE-588)4018923-5 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Funktionalungleichung |0 (DE-588)4155681-1 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-011-4341-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859355 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153100270829568 |
---|---|
any_adam_object | |
author | Rassias, Themistocles M. 1951- |
author_GND | (DE-588)120510057 |
author_facet | Rassias, Themistocles M. 1951- |
author_role | aut |
author_sort | Rassias, Themistocles M. 1951- |
author_variant | t m r tm tmr |
building | Verbundindex |
bvnumber | BV042423938 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184309317 (DE-599)BVBBV042423938 |
dewey-full | 515.625 515.75 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.625 515.75 |
dewey-search | 515.625 515.75 |
dewey-sort | 3515.625 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-011-4341-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04175nmm a2200625zcb4500</leader><controlfield tag="001">BV042423938</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160218 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401143417</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-011-4341-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401058698</subfield><subfield code="c">Print</subfield><subfield code="9">978-94-010-5869-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-011-4341-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184309317</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423938</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.625</subfield><subfield code="2">23</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.75</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rassias, Themistocles M.</subfield><subfield code="d">1951-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120510057</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Functional Equations and Inequalities</subfield><subfield code="c">by Themistocles M. Rassias</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 336 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">518</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Functional Equations and Inequalities provides an extensive study of some of the most important topics of current interest in functional equations and inequalities. Subjects dealt with include: a Pythagorean functional equation, a functional definition of trigonometric functions, the functional equation of the square root spiral, a conditional Cauchy functional equation, an iterative functional equation, the Hille-type functional equation, the polynomial-like iterative functional equation, distribution of zeros and inequalities for zeros of algebraic polynomials, a qualitative study of Lobachevsky's complex functional equation, functional inequalities in special classes of functions, replicativity and function spaces, normal distributions, some difference equations, finite sums decompositions of functions, harmonic functions, set-valued quasiconvex functions, the problem of expressibility in some extensions of free groups, Aleksandrov problem and mappings which preserve distances, Ulam's problem, stability of some functional equation for generalized trigonometric functions, Hyers-Ulam stability of Hosszil's equation, superstability of a functional equation, and some demand functions in a duopoly market with advertising. It is a pleasure to express my deepest appreciation to all the mathematicians who contributed to this volume. Finally, we wish to acknowledge the superb assistance provided by the staff of Kluwer Academic Publishers. June 2000 Themistocles M. Rassias xi ON THE STABILITY OF A FUNCTIONAL EQUATION FOR GENERALIZED TRIGONOMETRIC FUNCTIONS ROMAN BADORA Instytut Matematyki, Uniwersytet Slaski, ul. Bankowa 14, PL-40-007 Katowice, Poland, e-mail: robadora@gate. math. us. edu. pl Abstract. In the present paper the stability result concerning a functional equation for generalized trigonometric functions is presented. Z.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of complex variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Difference and Functional Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximations and Expansions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of a Complex Variable</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionalgleichung</subfield><subfield code="0">(DE-588)4018923-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionalungleichung</subfield><subfield code="0">(DE-588)4155681-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funktionalgleichung</subfield><subfield code="0">(DE-588)4018923-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Funktionalungleichung</subfield><subfield code="0">(DE-588)4155681-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-011-4341-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859355</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV042423938 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:14Z |
institution | BVB |
isbn | 9789401143417 9789401058698 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859355 |
oclc_num | 1184309317 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XI, 336 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Mathematics and Its Applications |
spelling | Rassias, Themistocles M. 1951- Verfasser (DE-588)120510057 aut Functional Equations and Inequalities by Themistocles M. Rassias Dordrecht Springer Netherlands 2000 1 Online-Ressource (XI, 336 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 518 Functional Equations and Inequalities provides an extensive study of some of the most important topics of current interest in functional equations and inequalities. Subjects dealt with include: a Pythagorean functional equation, a functional definition of trigonometric functions, the functional equation of the square root spiral, a conditional Cauchy functional equation, an iterative functional equation, the Hille-type functional equation, the polynomial-like iterative functional equation, distribution of zeros and inequalities for zeros of algebraic polynomials, a qualitative study of Lobachevsky's complex functional equation, functional inequalities in special classes of functions, replicativity and function spaces, normal distributions, some difference equations, finite sums decompositions of functions, harmonic functions, set-valued quasiconvex functions, the problem of expressibility in some extensions of free groups, Aleksandrov problem and mappings which preserve distances, Ulam's problem, stability of some functional equation for generalized trigonometric functions, Hyers-Ulam stability of Hosszil's equation, superstability of a functional equation, and some demand functions in a duopoly market with advertising. It is a pleasure to express my deepest appreciation to all the mathematicians who contributed to this volume. Finally, we wish to acknowledge the superb assistance provided by the staff of Kluwer Academic Publishers. June 2000 Themistocles M. Rassias xi ON THE STABILITY OF A FUNCTIONAL EQUATION FOR GENERALIZED TRIGONOMETRIC FUNCTIONS ROMAN BADORA Instytut Matematyki, Uniwersytet Slaski, ul. Bankowa 14, PL-40-007 Katowice, Poland, e-mail: robadora@gate. math. us. edu. pl Abstract. In the present paper the stability result concerning a functional equation for generalized trigonometric functions is presented. Z. Mathematics Functional equations Functional analysis Functions of complex variables Differential equations, partial Difference and Functional Equations Approximations and Expansions Functional Analysis Functions of a Complex Variable Partial Differential Equations Mathematik Funktionalgleichung (DE-588)4018923-5 gnd rswk-swf Funktionalungleichung (DE-588)4155681-1 gnd rswk-swf 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content Funktionalgleichung (DE-588)4018923-5 s 2\p DE-604 Funktionalungleichung (DE-588)4155681-1 s 3\p DE-604 https://doi.org/10.1007/978-94-011-4341-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Rassias, Themistocles M. 1951- Functional Equations and Inequalities Mathematics Functional equations Functional analysis Functions of complex variables Differential equations, partial Difference and Functional Equations Approximations and Expansions Functional Analysis Functions of a Complex Variable Partial Differential Equations Mathematik Funktionalgleichung (DE-588)4018923-5 gnd Funktionalungleichung (DE-588)4155681-1 gnd |
subject_GND | (DE-588)4018923-5 (DE-588)4155681-1 (DE-588)4143413-4 |
title | Functional Equations and Inequalities |
title_auth | Functional Equations and Inequalities |
title_exact_search | Functional Equations and Inequalities |
title_full | Functional Equations and Inequalities by Themistocles M. Rassias |
title_fullStr | Functional Equations and Inequalities by Themistocles M. Rassias |
title_full_unstemmed | Functional Equations and Inequalities by Themistocles M. Rassias |
title_short | Functional Equations and Inequalities |
title_sort | functional equations and inequalities |
topic | Mathematics Functional equations Functional analysis Functions of complex variables Differential equations, partial Difference and Functional Equations Approximations and Expansions Functional Analysis Functions of a Complex Variable Partial Differential Equations Mathematik Funktionalgleichung (DE-588)4018923-5 gnd Funktionalungleichung (DE-588)4155681-1 gnd |
topic_facet | Mathematics Functional equations Functional analysis Functions of complex variables Differential equations, partial Difference and Functional Equations Approximations and Expansions Functional Analysis Functions of a Complex Variable Partial Differential Equations Mathematik Funktionalgleichung Funktionalungleichung Aufsatzsammlung |
url | https://doi.org/10.1007/978-94-011-4341-7 |
work_keys_str_mv | AT rassiasthemistoclesm functionalequationsandinequalities |