Geometric Dynamics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
2000
|
Schriftenreihe: | Mathematics and Its Applications
513 |
Schlagworte: | |
Online-Zugang: | Volltext Inhaltsverzeichnis |
Beschreibung: | Geometric dynamics is a tool for developing a mathematical representation of real world phenomena, based on the notion of a field line described in two ways: -as the solution of any Cauchy problem associated to a first-order autonomous differential system; -as the solution of a certain Cauchy problem associated to a second-order conservative prolongation of the initial system. The basic novelty of our book is the discovery that a field line is a geodesic of a suitable geometrical structure on a given space (Lorentz-Udri~te world-force law). In other words, we create a wider class of Riemann-Jacobi, Riemann-Jacobi-Lagrange, or Finsler-Jacobi manifolds, ensuring that all trajectories of a given vector field are geodesics. This is our contribution to an old open problem studied by H. Poincare, S. Sasaki and others. From the kinematic viewpoint of corpuscular intuition, a field line shows the trajectory followed by a particle at a point of the definition domain of a vector field, if the particle is sensitive to the related type of field. Therefore, field lines appear in a natural way in problems of theoretical mechanics, fluid mechanics, physics, thermodynamics, biology, chemistry, etc |
Beschreibung: | 1 Online-Ressource (XVI, 395 p) |
ISBN: | 9789401141871 9789401058223 |
DOI: | 10.1007/978-94-011-4187-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423931 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2000 |||| o||u| ||||||eng d | ||
020 | |a 9789401141871 |c Online |9 978-94-011-4187-1 | ||
020 | |a 9789401058223 |c Print |9 978-94-010-5822-3 | ||
024 | 7 | |a 10.1007/978-94-011-4187-1 |2 doi | |
035 | |a (OCoLC)1165546450 | ||
035 | |a (DE-599)BVBBV042423931 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 003.3 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Udrişte, Constantin |e Verfasser |4 aut | |
245 | 1 | 0 | |a Geometric Dynamics |c by Constantin Udrişte |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 2000 | |
300 | |a 1 Online-Ressource (XVI, 395 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and Its Applications |v 513 | |
500 | |a Geometric dynamics is a tool for developing a mathematical representation of real world phenomena, based on the notion of a field line described in two ways: -as the solution of any Cauchy problem associated to a first-order autonomous differential system; -as the solution of a certain Cauchy problem associated to a second-order conservative prolongation of the initial system. The basic novelty of our book is the discovery that a field line is a geodesic of a suitable geometrical structure on a given space (Lorentz-Udri~te world-force law). In other words, we create a wider class of Riemann-Jacobi, Riemann-Jacobi-Lagrange, or Finsler-Jacobi manifolds, ensuring that all trajectories of a given vector field are geodesics. This is our contribution to an old open problem studied by H. Poincare, S. Sasaki and others. From the kinematic viewpoint of corpuscular intuition, a field line shows the trajectory followed by a particle at a point of the definition domain of a vector field, if the particle is sensitive to the related type of field. Therefore, field lines appear in a natural way in problems of theoretical mechanics, fluid mechanics, physics, thermodynamics, biology, chemistry, etc | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Computer science / Mathematics | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Mathematical Modeling and Industrial Mathematics | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Optimization | |
650 | 4 | |a Computational Mathematics and Numerical Analysis | |
650 | 4 | |a Informatik | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Differenzierbares dynamisches System |0 (DE-588)4137931-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Differenzierbares dynamisches System |0 (DE-588)4137931-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-011-4187-1 |x Verlag |3 Volltext |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027859348&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859348 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153100276072448 |
---|---|
adam_text | I. TABLE OF CONTENTS
I. TABLE OF
CONTENTS.................................................................................................................3
II. LIST OF ABBREVIATIONS (IN ORDER OF
APPEARANCE)...........................................................7
III. INDEX OF
TABLES.................................................................................................................
9
IV. INDEX OF
FIGURES..............................................................................................................12
PRELIMINARY REM
ARK..............................................................................................................
14
1.
INTRODUCTION...................................................................................................................
15
1.1 BACKGROUND OF LUNG CANCER
.................................................................................
16
1.1.1
EPIDEMIOLOGY..................................................................................................16
1.1.2 RISK FACTORS AND
CARCINOGENESIS................................................................
17
1.1.3 CLINICAL
DIAGNOSTICS.......................................................................................
18
1.1.4 TUMOR CLASSIFICATION AND
HISTOLOGY.............................................................19
1.1.5 TREATM
ENT.......................................................................................................
19
1.2 SYMPTOMS AND DISEASE-RELATED IMPAIRMENT
...................................................
21
1.3 PHYSICAL ACTIVITY AND EXERCISE IN LUNG CANCER PATIENTS
................................
22
1.4 INTENTION OF THIS
DISSERTATION................................................................................27
1.4.1 AIMS AND OBJECTIVES OF THIS THESIS
................................................................
28
2. METHODS AND
DESIGN..................................................................................................
35
2.1 PHYSICAL EXERCISE IN ADVANCED CANCER PATIENTS UNDERGOING PALLIATIVE
TREATMENT (SYSTEMATIC LITERATURE REVIEW )
...................................................................
35
2.1.1 SEARCH STRATEGY AND SELECTION CRITERIA
35
2.1.2 DATA EXTRACTION AND VALIDITY
ASSESSMENT......................................................36
2.1.3 RATING OF STUDY
QUALITY......................................................................................
37
2.1.4 STATISTICAL
ANALYSES............................................................................................37
2.2 POSITIVE STUDY: PHYSICAL EXERCISE PROGRAM IN NON-OPERABLE LUNG
CANCER PATIENTS UNDERGOING PALLIATIVE TREATMENT (STUDY
DESIGN)........................38
2.2.1 STUDY
DESIGN......................................................................................................
38
2.2.2 PATIENTS AND
SETTING...........................................................................................39
2.2.3 STUDY
INTERVENTIONS............................................................................................39
2.2.4 PHYSICAL FUNCTION
TESTS......................................................................................42
2.3 PHYSICAL EXERCISE BEHAVIOR AND PERFORMANCE STATUS IN PATIENTS WITH
ADVANCED LUNG CANCER (CROSS-SECTIONAL BASELINE DATA ANALYSIS)
......................
43
2.3.1 PATIENT
CHARACTERISTICS......................................................................................43
2.3.2 PHYSICAL
PERFORMANCE.......................................................................................44
2.3.3 EXERCISE AND WALKING
BEHAVIOR.......................................................................44
2.3.4 COMPARISON OF PATIENT AND REFERENCE D A TA
..................................................45
2.3.5 STATISTICAL
ANALYSES...........................................................................................
45
2.4 EFFECTS OF A 24-WEEK EXERCISE PROGRAM IN PATIENTS WITH ADVANCED LUNG
CANCER (INTERVENTION ANALYSIS INCLUDING PHYSICAL PERFORMANCE PARAMETER)
.......
46
2.4.1 INTERVENTION
RESULTS...........................................................................................
46
2.4.2 PATIENT ADHERENCE AND COMPLETION RATES
.....................................................
46
2.4.3 STATISTICAL ANALYSES
48
3.
RESULTS...........................................................................................................................
50
3.1 PHYSICAL EXERCISE IN ADVANCED CANCER PATIENTS UNDERGOING PALLIATIVE
T REATM
ENT..........................................................................................................................50
3.2 PHYSICAL EXERCISE BEHAVIOR AND PERFORMANCE STATUS IN PATIENTS WITH
ADVANCED LUNG C
ANCER..................................................................................................55
3.2.1 EXERCISE AND WALKING
BEHAVIOR.......................................................................56
3.2.2 PHYSICAL
PERFORMANCE.......................................................................................
57
3.2.3 DETERMINANTS OF PHYSICAL
PERFORMANCE......................................................... 59
3.3 EFFECTS OF A 24-WEEK PHYSICAL EXERCISE INTERVENTION IN PATIENTS WITH
ADVANCED LUNG C
ANCER.................................................................................................
62
3.3.1 PART 1: INTERVENTION RESULTS FROM TO TO T2 (24
WEEKS)................................67
3.3.2 PART 2A: INTERVENTION RESULTS FROM TO TO T 1
.........................................79
3.3.3 PART 2B: INTERVENTION RESULTS FROM T 1 TO T 2
.........................................92
4.
DISCUSSION.....................................................................................................................
97
4.1 MAIN
FINDINGS..............................................................................................................
97
4.2 PHYSICAL EXERCISE IN PATIENTS WITH ADVANCED CANCER UNDERGOING
PALLIATIVE
T REATM
ENT.........................................................................................................................
99
4.3 PHYSICAL EXERCISE BEHAVIOR AND PERFORMANCE STATUS IN PATIENTS WITH
ADVANCED LUNG C
ANCER...............................................................................................
101
4.4 EFFECTS OF A 24-WEEK PHYSICAL EXERCISE PROGRAM IN PATIENTS WITH
ADVANCED
LUNG
CANCER...................................................................................................................104
4.5 CONCLUSION
112
5.
SUMMARY......................................................................................................................114
6.
REFERENCES..................................................................................................................
116
7.
PUBLICATIONS.................................................................................................................132
7.1 PEER-REVIEWED
PUBLICATIONS...................................................................................132
7.2 OTHER
PUBLICATIONS...................................................................................................
132
7.3 ORAL
PRESENTATIONS..................................................................................................132
7.4 POSTER
PRESENTATIONS..............................................................................................
133
CURRICULUM VITA E
...............................................................................................................134
ACKNOWLEDGEMENTS.........................................................................................................
136
|
any_adam_object | 1 |
author | Udrişte, Constantin |
author_facet | Udrişte, Constantin |
author_role | aut |
author_sort | Udrişte, Constantin |
author_variant | c u cu |
building | Verbundindex |
bvnumber | BV042423931 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165546450 (DE-599)BVBBV042423931 |
dewey-full | 003.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 003 - Systems |
dewey-raw | 003.3 |
dewey-search | 003.3 |
dewey-sort | 13.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Mathematik |
doi_str_mv | 10.1007/978-94-011-4187-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03321nmm a2200553zcb4500</leader><controlfield tag="001">BV042423931</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401141871</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-011-4187-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401058223</subfield><subfield code="c">Print</subfield><subfield code="9">978-94-010-5822-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-011-4187-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165546450</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423931</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">003.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Udrişte, Constantin</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometric Dynamics</subfield><subfield code="c">by Constantin Udrişte</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 395 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">513</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Geometric dynamics is a tool for developing a mathematical representation of real world phenomena, based on the notion of a field line described in two ways: -as the solution of any Cauchy problem associated to a first-order autonomous differential system; -as the solution of a certain Cauchy problem associated to a second-order conservative prolongation of the initial system. The basic novelty of our book is the discovery that a field line is a geodesic of a suitable geometrical structure on a given space (Lorentz-Udri~te world-force law). In other words, we create a wider class of Riemann-Jacobi, Riemann-Jacobi-Lagrange, or Finsler-Jacobi manifolds, ensuring that all trajectories of a given vector field are geodesics. This is our contribution to an old open problem studied by H. Poincare, S. Sasaki and others. From the kinematic viewpoint of corpuscular intuition, a field line shows the trajectory followed by a particle at a point of the definition domain of a vector field, if the particle is sensitive to the related type of field. Therefore, field lines appear in a natural way in problems of theoretical mechanics, fluid mechanics, physics, thermodynamics, biology, chemistry, etc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Modeling and Industrial Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Mathematics and Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differenzierbares dynamisches System</subfield><subfield code="0">(DE-588)4137931-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differenzierbares dynamisches System</subfield><subfield code="0">(DE-588)4137931-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-011-4187-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027859348&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859348</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423931 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:14Z |
institution | BVB |
isbn | 9789401141871 9789401058223 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859348 |
oclc_num | 1165546450 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVI, 395 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Mathematics and Its Applications |
spelling | Udrişte, Constantin Verfasser aut Geometric Dynamics by Constantin Udrişte Dordrecht Springer Netherlands 2000 1 Online-Ressource (XVI, 395 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 513 Geometric dynamics is a tool for developing a mathematical representation of real world phenomena, based on the notion of a field line described in two ways: -as the solution of any Cauchy problem associated to a first-order autonomous differential system; -as the solution of a certain Cauchy problem associated to a second-order conservative prolongation of the initial system. The basic novelty of our book is the discovery that a field line is a geodesic of a suitable geometrical structure on a given space (Lorentz-Udri~te world-force law). In other words, we create a wider class of Riemann-Jacobi, Riemann-Jacobi-Lagrange, or Finsler-Jacobi manifolds, ensuring that all trajectories of a given vector field are geodesics. This is our contribution to an old open problem studied by H. Poincare, S. Sasaki and others. From the kinematic viewpoint of corpuscular intuition, a field line shows the trajectory followed by a particle at a point of the definition domain of a vector field, if the particle is sensitive to the related type of field. Therefore, field lines appear in a natural way in problems of theoretical mechanics, fluid mechanics, physics, thermodynamics, biology, chemistry, etc Mathematics Computer science / Mathematics Global differential geometry Mathematical optimization Mathematical Modeling and Industrial Mathematics Applications of Mathematics Differential Geometry Optimization Computational Mathematics and Numerical Analysis Informatik Mathematik Differenzierbares dynamisches System (DE-588)4137931-7 gnd rswk-swf Differenzierbares dynamisches System (DE-588)4137931-7 s 1\p DE-604 https://doi.org/10.1007/978-94-011-4187-1 Verlag Volltext DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027859348&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Udrişte, Constantin Geometric Dynamics Mathematics Computer science / Mathematics Global differential geometry Mathematical optimization Mathematical Modeling and Industrial Mathematics Applications of Mathematics Differential Geometry Optimization Computational Mathematics and Numerical Analysis Informatik Mathematik Differenzierbares dynamisches System (DE-588)4137931-7 gnd |
subject_GND | (DE-588)4137931-7 |
title | Geometric Dynamics |
title_auth | Geometric Dynamics |
title_exact_search | Geometric Dynamics |
title_full | Geometric Dynamics by Constantin Udrişte |
title_fullStr | Geometric Dynamics by Constantin Udrişte |
title_full_unstemmed | Geometric Dynamics by Constantin Udrişte |
title_short | Geometric Dynamics |
title_sort | geometric dynamics |
topic | Mathematics Computer science / Mathematics Global differential geometry Mathematical optimization Mathematical Modeling and Industrial Mathematics Applications of Mathematics Differential Geometry Optimization Computational Mathematics and Numerical Analysis Informatik Mathematik Differenzierbares dynamisches System (DE-588)4137931-7 gnd |
topic_facet | Mathematics Computer science / Mathematics Global differential geometry Mathematical optimization Mathematical Modeling and Industrial Mathematics Applications of Mathematics Differential Geometry Optimization Computational Mathematics and Numerical Analysis Informatik Mathematik Differenzierbares dynamisches System |
url | https://doi.org/10.1007/978-94-011-4187-1 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027859348&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT udristeconstantin geometricdynamics |