Spectral Theory of Families of Self-Adjoint Operators:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1991
|
Schriftenreihe: | Mathematics and Its Applications, Soviet Series
57 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 'Et moi, ... , si j'avait su comment en revenir, One service mathematics has rendered the human race. It has put common sense back je n'y serais point aile.' where it belongs, on the topmost shelf next Jules Verne to the dusty canister labelled 'discarded n- sense'. The series is divergent; therefore we may be Eric T. Bell able to do something with it. O. Hcaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics seNe as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One seIVice topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'j~tre of this series |
Beschreibung: | 1 Online-Ressource (XVI, 293 p) |
ISBN: | 9789401138062 9789401056939 |
ISSN: | 0169-6378 |
DOI: | 10.1007/978-94-011-3806-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423923 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1991 |||| o||u| ||||||eng d | ||
020 | |a 9789401138062 |c Online |9 978-94-011-3806-2 | ||
020 | |a 9789401056939 |c Print |9 978-94-010-5693-9 | ||
024 | 7 | |a 10.1007/978-94-011-3806-2 |2 doi | |
035 | |a (OCoLC)863700818 | ||
035 | |a (DE-599)BVBBV042423923 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.724 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Samoilenko, Y. S. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Spectral Theory of Families of Self-Adjoint Operators |c by Y. S. Samoilenko |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1991 | |
300 | |a 1 Online-Ressource (XVI, 293 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and Its Applications, Soviet Series |v 57 |x 0169-6378 | |
500 | |a 'Et moi, ... , si j'avait su comment en revenir, One service mathematics has rendered the human race. It has put common sense back je n'y serais point aile.' where it belongs, on the topmost shelf next Jules Verne to the dusty canister labelled 'discarded n- sense'. The series is divergent; therefore we may be Eric T. Bell able to do something with it. O. Hcaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics seNe as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One seIVice topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'j~tre of this series | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Topological Groups | |
650 | 4 | |a Operator theory | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Operator Theory | |
650 | 4 | |a Topological Groups, Lie Groups | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Spektraltheorie |0 (DE-588)4116561-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Spektraltheorie |0 (DE-588)4116561-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-011-3806-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859340 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153100254052352 |
---|---|
any_adam_object | |
author | Samoilenko, Y. S. |
author_facet | Samoilenko, Y. S. |
author_role | aut |
author_sort | Samoilenko, Y. S. |
author_variant | y s s ys yss |
building | Verbundindex |
bvnumber | BV042423923 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863700818 (DE-599)BVBBV042423923 |
dewey-full | 515.724 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.724 |
dewey-search | 515.724 |
dewey-sort | 3515.724 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-011-3806-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02712nmm a2200505zcb4500</leader><controlfield tag="001">BV042423923</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1991 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401138062</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-011-3806-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401056939</subfield><subfield code="c">Print</subfield><subfield code="9">978-94-010-5693-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-011-3806-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863700818</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423923</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.724</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Samoilenko, Y. S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spectral Theory of Families of Self-Adjoint Operators</subfield><subfield code="c">by Y. S. Samoilenko</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 293 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications, Soviet Series</subfield><subfield code="v">57</subfield><subfield code="x">0169-6378</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">'Et moi, ... , si j'avait su comment en revenir, One service mathematics has rendered the human race. It has put common sense back je n'y serais point aile.' where it belongs, on the topmost shelf next Jules Verne to the dusty canister labelled 'discarded n- sense'. The series is divergent; therefore we may be Eric T. Bell able to do something with it. O. Hcaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics seNe as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One seIVice topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'j~tre of this series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-011-3806-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859340</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423923 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:14Z |
institution | BVB |
isbn | 9789401138062 9789401056939 |
issn | 0169-6378 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859340 |
oclc_num | 863700818 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVI, 293 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Mathematics and Its Applications, Soviet Series |
spelling | Samoilenko, Y. S. Verfasser aut Spectral Theory of Families of Self-Adjoint Operators by Y. S. Samoilenko Dordrecht Springer Netherlands 1991 1 Online-Ressource (XVI, 293 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications, Soviet Series 57 0169-6378 'Et moi, ... , si j'avait su comment en revenir, One service mathematics has rendered the human race. It has put common sense back je n'y serais point aile.' where it belongs, on the topmost shelf next Jules Verne to the dusty canister labelled 'discarded n- sense'. The series is divergent; therefore we may be Eric T. Bell able to do something with it. O. Hcaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics seNe as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One seIVice topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'j~tre of this series Mathematics Topological Groups Operator theory Distribution (Probability theory) Operator Theory Topological Groups, Lie Groups Probability Theory and Stochastic Processes Mathematik Spektraltheorie (DE-588)4116561-5 gnd rswk-swf Spektraltheorie (DE-588)4116561-5 s 1\p DE-604 https://doi.org/10.1007/978-94-011-3806-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Samoilenko, Y. S. Spectral Theory of Families of Self-Adjoint Operators Mathematics Topological Groups Operator theory Distribution (Probability theory) Operator Theory Topological Groups, Lie Groups Probability Theory and Stochastic Processes Mathematik Spektraltheorie (DE-588)4116561-5 gnd |
subject_GND | (DE-588)4116561-5 |
title | Spectral Theory of Families of Self-Adjoint Operators |
title_auth | Spectral Theory of Families of Self-Adjoint Operators |
title_exact_search | Spectral Theory of Families of Self-Adjoint Operators |
title_full | Spectral Theory of Families of Self-Adjoint Operators by Y. S. Samoilenko |
title_fullStr | Spectral Theory of Families of Self-Adjoint Operators by Y. S. Samoilenko |
title_full_unstemmed | Spectral Theory of Families of Self-Adjoint Operators by Y. S. Samoilenko |
title_short | Spectral Theory of Families of Self-Adjoint Operators |
title_sort | spectral theory of families of self adjoint operators |
topic | Mathematics Topological Groups Operator theory Distribution (Probability theory) Operator Theory Topological Groups, Lie Groups Probability Theory and Stochastic Processes Mathematik Spektraltheorie (DE-588)4116561-5 gnd |
topic_facet | Mathematics Topological Groups Operator theory Distribution (Probability theory) Operator Theory Topological Groups, Lie Groups Probability Theory and Stochastic Processes Mathematik Spektraltheorie |
url | https://doi.org/10.1007/978-94-011-3806-2 |
work_keys_str_mv | AT samoilenkoys spectraltheoryoffamiliesofselfadjointoperators |