Systems of Evolution Equations with Periodic and Quasiperiodic Coefficients:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1993
|
Schriftenreihe: | Mathematics and its Applications, Soviet Series
87 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Many problems in celestial mechanics, physics and engineering involve the study of oscillating systems governed by nonlinear ordinary differential equations or partial differential equations. This volume represents an important contribution to the available methods of solution for such systems. The contents are divided into six chapters. Chapter 1 presents a study of periodic solutions for nonlinear systems of evolution equations including differential equations with lag, systems of neutral type, various classes of nonlinear systems of integro-differential equations, etc. A numerical-analytic method for the investigation of periodic solutions of these evolution equations is presented. In Chapters 2 and 3, problems concerning the existence of periodic and quasiperiodic solutions for systems with lag are examined. For a nonlinear system with quasiperiodic coefficients and lag, the conditions under which quasiperiodic solutions exist are established. Chapter 4 is devoted to the study of invariant toroidal manifolds for various classes of systems of differential equations with quasiperiodic coefficients. Chapter 5 examines the problem concerning the reducibility of a linear system of difference equations with quasiperiodic coefficients to a linear system of difference equations with constant coefficients. Chapter 6 contains an investigation of invariant toroidal sets for systems of difference equations with quasiperiodic coefficients. For mathematicians whose work involves the study of oscillating systems |
Beschreibung: | 1 Online-Ressource (XIV, 280 p) |
ISBN: | 9789401127288 9789401052108 |
ISSN: | 0169-6378 |
DOI: | 10.1007/978-94-011-2728-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423891 | ||
003 | DE-604 | ||
005 | 20201205 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1993 |||| o||u| ||||||eng d | ||
020 | |a 9789401127288 |c Online |9 978-94-011-2728-8 | ||
020 | |a 9789401052108 |c Print |9 978-94-010-5210-8 | ||
024 | 7 | |a 10.1007/978-94-011-2728-8 |2 doi | |
035 | |a (OCoLC)879623606 | ||
035 | |a (DE-599)BVBBV042423891 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.352 |2 23 | |
084 | |a SK 920 |0 (DE-625)143272: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
084 | |a MAT 354f |2 stub | ||
100 | 1 | |a Mitropolʹskij, Jurij Alekseevič |d 1917-2008 |e Verfasser |0 (DE-588)104890029 |4 aut | |
245 | 1 | 0 | |a Systems of Evolution Equations with Periodic and Quasiperiodic Coefficients |c by Yu A. Mitropolsky, A. M. Samoilenko, D. I. Martinyuk |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1993 | |
300 | |a 1 Online-Ressource (XIV, 280 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and its Applications, Soviet Series |v 87 |x 0169-6378 | |
500 | |a Many problems in celestial mechanics, physics and engineering involve the study of oscillating systems governed by nonlinear ordinary differential equations or partial differential equations. This volume represents an important contribution to the available methods of solution for such systems. The contents are divided into six chapters. Chapter 1 presents a study of periodic solutions for nonlinear systems of evolution equations including differential equations with lag, systems of neutral type, various classes of nonlinear systems of integro-differential equations, etc. A numerical-analytic method for the investigation of periodic solutions of these evolution equations is presented. In Chapters 2 and 3, problems concerning the existence of periodic and quasiperiodic solutions for systems with lag are examined. For a nonlinear system with quasiperiodic coefficients and lag, the conditions under which quasiperiodic solutions exist are established. Chapter 4 is devoted to the study of invariant toroidal manifolds for various classes of systems of differential equations with quasiperiodic coefficients. Chapter 5 examines the problem concerning the reducibility of a linear system of difference equations with quasiperiodic coefficients to a linear system of difference equations with constant coefficients. Chapter 6 contains an investigation of invariant toroidal sets for systems of difference equations with quasiperiodic coefficients. For mathematicians whose work involves the study of oscillating systems | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Differential Equations | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Ordinary Differential Equations | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Periodische Lösung |0 (DE-588)4199269-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quasiperiodische Lösung |0 (DE-588)4236468-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Evolutionsgleichung |0 (DE-588)4129061-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Evolutionsgleichung |0 (DE-588)4129061-6 |D s |
689 | 0 | 1 | |a Periodische Lösung |0 (DE-588)4199269-6 |D s |
689 | 0 | |5 DE-188 | |
689 | 1 | 0 | |a Evolutionsgleichung |0 (DE-588)4129061-6 |D s |
689 | 1 | 1 | |a Quasiperiodische Lösung |0 (DE-588)4236468-1 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Samojlenko, Anatolij M. |d 1938-2020 |e Sonstige |0 (DE-588)108416569 |4 oth | |
700 | 1 | |a Martinjuk, D. I. |e Sonstige |0 (DE-588)1157442684 |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-011-2728-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859308 |
Datensatz im Suchindex
_version_ | 1804153100200574976 |
---|---|
any_adam_object | |
author | Mitropolʹskij, Jurij Alekseevič 1917-2008 |
author_GND | (DE-588)104890029 (DE-588)108416569 (DE-588)1157442684 |
author_facet | Mitropolʹskij, Jurij Alekseevič 1917-2008 |
author_role | aut |
author_sort | Mitropolʹskij, Jurij Alekseevič 1917-2008 |
author_variant | j a m ja jam |
building | Verbundindex |
bvnumber | BV042423891 |
classification_rvk | SK 920 |
classification_tum | MAT 000 MAT 354f |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879623606 (DE-599)BVBBV042423891 |
dewey-full | 515.352 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.352 |
dewey-search | 515.352 |
dewey-sort | 3515.352 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-011-2728-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03836nmm a2200601zcb4500</leader><controlfield tag="001">BV042423891</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201205 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1993 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401127288</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-011-2728-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401052108</subfield><subfield code="c">Print</subfield><subfield code="9">978-94-010-5210-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-011-2728-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879623606</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423891</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.352</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 920</subfield><subfield code="0">(DE-625)143272:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 354f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mitropolʹskij, Jurij Alekseevič</subfield><subfield code="d">1917-2008</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)104890029</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Systems of Evolution Equations with Periodic and Quasiperiodic Coefficients</subfield><subfield code="c">by Yu A. Mitropolsky, A. M. Samoilenko, D. I. Martinyuk</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 280 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and its Applications, Soviet Series</subfield><subfield code="v">87</subfield><subfield code="x">0169-6378</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Many problems in celestial mechanics, physics and engineering involve the study of oscillating systems governed by nonlinear ordinary differential equations or partial differential equations. This volume represents an important contribution to the available methods of solution for such systems. The contents are divided into six chapters. Chapter 1 presents a study of periodic solutions for nonlinear systems of evolution equations including differential equations with lag, systems of neutral type, various classes of nonlinear systems of integro-differential equations, etc. A numerical-analytic method for the investigation of periodic solutions of these evolution equations is presented. In Chapters 2 and 3, problems concerning the existence of periodic and quasiperiodic solutions for systems with lag are examined. For a nonlinear system with quasiperiodic coefficients and lag, the conditions under which quasiperiodic solutions exist are established. Chapter 4 is devoted to the study of invariant toroidal manifolds for various classes of systems of differential equations with quasiperiodic coefficients. Chapter 5 examines the problem concerning the reducibility of a linear system of difference equations with quasiperiodic coefficients to a linear system of difference equations with constant coefficients. Chapter 6 contains an investigation of invariant toroidal sets for systems of difference equations with quasiperiodic coefficients. For mathematicians whose work involves the study of oscillating systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordinary Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Periodische Lösung</subfield><subfield code="0">(DE-588)4199269-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quasiperiodische Lösung</subfield><subfield code="0">(DE-588)4236468-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Evolutionsgleichung</subfield><subfield code="0">(DE-588)4129061-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Evolutionsgleichung</subfield><subfield code="0">(DE-588)4129061-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Periodische Lösung</subfield><subfield code="0">(DE-588)4199269-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-188</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Evolutionsgleichung</subfield><subfield code="0">(DE-588)4129061-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Quasiperiodische Lösung</subfield><subfield code="0">(DE-588)4236468-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Samojlenko, Anatolij M.</subfield><subfield code="d">1938-2020</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)108416569</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Martinjuk, D. I.</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1157442684</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-011-2728-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859308</subfield></datafield></record></collection> |
id | DE-604.BV042423891 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:14Z |
institution | BVB |
isbn | 9789401127288 9789401052108 |
issn | 0169-6378 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859308 |
oclc_num | 879623606 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIV, 280 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Mathematics and its Applications, Soviet Series |
spelling | Mitropolʹskij, Jurij Alekseevič 1917-2008 Verfasser (DE-588)104890029 aut Systems of Evolution Equations with Periodic and Quasiperiodic Coefficients by Yu A. Mitropolsky, A. M. Samoilenko, D. I. Martinyuk Dordrecht Springer Netherlands 1993 1 Online-Ressource (XIV, 280 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and its Applications, Soviet Series 87 0169-6378 Many problems in celestial mechanics, physics and engineering involve the study of oscillating systems governed by nonlinear ordinary differential equations or partial differential equations. This volume represents an important contribution to the available methods of solution for such systems. The contents are divided into six chapters. Chapter 1 presents a study of periodic solutions for nonlinear systems of evolution equations including differential equations with lag, systems of neutral type, various classes of nonlinear systems of integro-differential equations, etc. A numerical-analytic method for the investigation of periodic solutions of these evolution equations is presented. In Chapters 2 and 3, problems concerning the existence of periodic and quasiperiodic solutions for systems with lag are examined. For a nonlinear system with quasiperiodic coefficients and lag, the conditions under which quasiperiodic solutions exist are established. Chapter 4 is devoted to the study of invariant toroidal manifolds for various classes of systems of differential equations with quasiperiodic coefficients. Chapter 5 examines the problem concerning the reducibility of a linear system of difference equations with quasiperiodic coefficients to a linear system of difference equations with constant coefficients. Chapter 6 contains an investigation of invariant toroidal sets for systems of difference equations with quasiperiodic coefficients. For mathematicians whose work involves the study of oscillating systems Mathematics Differential Equations Differential equations, partial Ordinary Differential Equations Partial Differential Equations Applications of Mathematics Mathematik Periodische Lösung (DE-588)4199269-6 gnd rswk-swf Quasiperiodische Lösung (DE-588)4236468-1 gnd rswk-swf Evolutionsgleichung (DE-588)4129061-6 gnd rswk-swf Evolutionsgleichung (DE-588)4129061-6 s Periodische Lösung (DE-588)4199269-6 s DE-188 Quasiperiodische Lösung (DE-588)4236468-1 s DE-604 Samojlenko, Anatolij M. 1938-2020 Sonstige (DE-588)108416569 oth Martinjuk, D. I. Sonstige (DE-588)1157442684 oth https://doi.org/10.1007/978-94-011-2728-8 Verlag Volltext |
spellingShingle | Mitropolʹskij, Jurij Alekseevič 1917-2008 Systems of Evolution Equations with Periodic and Quasiperiodic Coefficients Mathematics Differential Equations Differential equations, partial Ordinary Differential Equations Partial Differential Equations Applications of Mathematics Mathematik Periodische Lösung (DE-588)4199269-6 gnd Quasiperiodische Lösung (DE-588)4236468-1 gnd Evolutionsgleichung (DE-588)4129061-6 gnd |
subject_GND | (DE-588)4199269-6 (DE-588)4236468-1 (DE-588)4129061-6 |
title | Systems of Evolution Equations with Periodic and Quasiperiodic Coefficients |
title_auth | Systems of Evolution Equations with Periodic and Quasiperiodic Coefficients |
title_exact_search | Systems of Evolution Equations with Periodic and Quasiperiodic Coefficients |
title_full | Systems of Evolution Equations with Periodic and Quasiperiodic Coefficients by Yu A. Mitropolsky, A. M. Samoilenko, D. I. Martinyuk |
title_fullStr | Systems of Evolution Equations with Periodic and Quasiperiodic Coefficients by Yu A. Mitropolsky, A. M. Samoilenko, D. I. Martinyuk |
title_full_unstemmed | Systems of Evolution Equations with Periodic and Quasiperiodic Coefficients by Yu A. Mitropolsky, A. M. Samoilenko, D. I. Martinyuk |
title_short | Systems of Evolution Equations with Periodic and Quasiperiodic Coefficients |
title_sort | systems of evolution equations with periodic and quasiperiodic coefficients |
topic | Mathematics Differential Equations Differential equations, partial Ordinary Differential Equations Partial Differential Equations Applications of Mathematics Mathematik Periodische Lösung (DE-588)4199269-6 gnd Quasiperiodische Lösung (DE-588)4236468-1 gnd Evolutionsgleichung (DE-588)4129061-6 gnd |
topic_facet | Mathematics Differential Equations Differential equations, partial Ordinary Differential Equations Partial Differential Equations Applications of Mathematics Mathematik Periodische Lösung Quasiperiodische Lösung Evolutionsgleichung |
url | https://doi.org/10.1007/978-94-011-2728-8 |
work_keys_str_mv | AT mitropolʹskijjurijalekseevic systemsofevolutionequationswithperiodicandquasiperiodiccoefficients AT samojlenkoanatolijm systemsofevolutionequationswithperiodicandquasiperiodiccoefficients AT martinjukdi systemsofevolutionequationswithperiodicandquasiperiodiccoefficients |