Functional Integrals: Approximate Evaluation and Applications:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1993
|
Schriftenreihe: | Mathematics and Its Applications
249 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Integration in infinitely dimensional spaces (continual integration) is a powerful mathematical tool which is widely used in a number of fields of modern mathematics, such as analysis, the theory of differential and integral equations, probability theory and the theory of random processes. This monograph is devoted to numerical approximation methods of continual integration. A systematic description is given of the approximate computation methods of functional integrals on a wide class of measures, including measures generated by homogeneous random processes with independent increments and Gaussian processes. Many applications to problems which originate from analysis, probability and quantum physics are presented. This book will be of interest to mathematicians and physicists, including specialists in computational mathematics, functional and statistical physics, nuclear physics and quantum optics |
Beschreibung: | 1 Online-Ressource (X, 419 p) |
ISBN: | 9789401117616 9789401047739 |
DOI: | 10.1007/978-94-011-1761-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423858 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1993 |||| o||u| ||||||eng d | ||
020 | |a 9789401117616 |c Online |9 978-94-011-1761-6 | ||
020 | |a 9789401047739 |c Print |9 978-94-010-4773-9 | ||
024 | 7 | |a 10.1007/978-94-011-1761-6 |2 doi | |
035 | |a (OCoLC)1184442476 | ||
035 | |a (DE-599)BVBBV042423858 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 518 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Egorov, A. D. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Functional Integrals: Approximate Evaluation and Applications |c by A. D. Egorov, P. I. Sobolevsky, L. A. Yanovich |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1993 | |
300 | |a 1 Online-Ressource (X, 419 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and Its Applications |v 249 | |
500 | |a Integration in infinitely dimensional spaces (continual integration) is a powerful mathematical tool which is widely used in a number of fields of modern mathematics, such as analysis, the theory of differential and integral equations, probability theory and the theory of random processes. This monograph is devoted to numerical approximation methods of continual integration. A systematic description is given of the approximate computation methods of functional integrals on a wide class of measures, including measures generated by homogeneous random processes with independent increments and Gaussian processes. Many applications to problems which originate from analysis, probability and quantum physics are presented. This book will be of interest to mathematicians and physicists, including specialists in computational mathematics, functional and statistical physics, nuclear physics and quantum optics | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Computer science / Mathematics | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Computational Mathematics and Numerical Analysis | |
650 | 4 | |a Measure and Integration | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Quantum Physics | |
650 | 4 | |a Elementary Particles, Quantum Field Theory | |
650 | 4 | |a Informatik | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Quantentheorie | |
650 | 0 | 7 | |a Funktionalintegration |0 (DE-588)4155674-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Funktionalintegration |0 (DE-588)4155674-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Sobolevsky, P. I. |e Sonstige |4 oth | |
700 | 1 | |a Yanovich, L. A. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-011-1761-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859275 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153100104105984 |
---|---|
any_adam_object | |
author | Egorov, A. D. |
author_facet | Egorov, A. D. |
author_role | aut |
author_sort | Egorov, A. D. |
author_variant | a d e ad ade |
building | Verbundindex |
bvnumber | BV042423858 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184442476 (DE-599)BVBBV042423858 |
dewey-full | 518 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 518 - Numerical analysis |
dewey-raw | 518 |
dewey-search | 518 |
dewey-sort | 3518 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-011-1761-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02952nmm a2200577zcb4500</leader><controlfield tag="001">BV042423858</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1993 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401117616</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-011-1761-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401047739</subfield><subfield code="c">Print</subfield><subfield code="9">978-94-010-4773-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-011-1761-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184442476</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423858</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">518</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Egorov, A. D.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Functional Integrals: Approximate Evaluation and Applications</subfield><subfield code="c">by A. D. Egorov, P. I. Sobolevsky, L. A. Yanovich</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 419 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">249</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Integration in infinitely dimensional spaces (continual integration) is a powerful mathematical tool which is widely used in a number of fields of modern mathematics, such as analysis, the theory of differential and integral equations, probability theory and the theory of random processes. This monograph is devoted to numerical approximation methods of continual integration. A systematic description is given of the approximate computation methods of functional integrals on a wide class of measures, including measures generated by homogeneous random processes with independent increments and Gaussian processes. Many applications to problems which originate from analysis, probability and quantum physics are presented. This book will be of interest to mathematicians and physicists, including specialists in computational mathematics, functional and statistical physics, nuclear physics and quantum optics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Mathematics and Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measure and Integration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elementary Particles, Quantum Field Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionalintegration</subfield><subfield code="0">(DE-588)4155674-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funktionalintegration</subfield><subfield code="0">(DE-588)4155674-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sobolevsky, P. I.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yanovich, L. A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-011-1761-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859275</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423858 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:14Z |
institution | BVB |
isbn | 9789401117616 9789401047739 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859275 |
oclc_num | 1184442476 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 419 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Mathematics and Its Applications |
spelling | Egorov, A. D. Verfasser aut Functional Integrals: Approximate Evaluation and Applications by A. D. Egorov, P. I. Sobolevsky, L. A. Yanovich Dordrecht Springer Netherlands 1993 1 Online-Ressource (X, 419 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 249 Integration in infinitely dimensional spaces (continual integration) is a powerful mathematical tool which is widely used in a number of fields of modern mathematics, such as analysis, the theory of differential and integral equations, probability theory and the theory of random processes. This monograph is devoted to numerical approximation methods of continual integration. A systematic description is given of the approximate computation methods of functional integrals on a wide class of measures, including measures generated by homogeneous random processes with independent increments and Gaussian processes. Many applications to problems which originate from analysis, probability and quantum physics are presented. This book will be of interest to mathematicians and physicists, including specialists in computational mathematics, functional and statistical physics, nuclear physics and quantum optics Mathematics Computer science / Mathematics Distribution (Probability theory) Quantum theory Computational Mathematics and Numerical Analysis Measure and Integration Probability Theory and Stochastic Processes Quantum Physics Elementary Particles, Quantum Field Theory Informatik Mathematik Quantentheorie Funktionalintegration (DE-588)4155674-4 gnd rswk-swf Funktionalintegration (DE-588)4155674-4 s 1\p DE-604 Sobolevsky, P. I. Sonstige oth Yanovich, L. A. Sonstige oth https://doi.org/10.1007/978-94-011-1761-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Egorov, A. D. Functional Integrals: Approximate Evaluation and Applications Mathematics Computer science / Mathematics Distribution (Probability theory) Quantum theory Computational Mathematics and Numerical Analysis Measure and Integration Probability Theory and Stochastic Processes Quantum Physics Elementary Particles, Quantum Field Theory Informatik Mathematik Quantentheorie Funktionalintegration (DE-588)4155674-4 gnd |
subject_GND | (DE-588)4155674-4 |
title | Functional Integrals: Approximate Evaluation and Applications |
title_auth | Functional Integrals: Approximate Evaluation and Applications |
title_exact_search | Functional Integrals: Approximate Evaluation and Applications |
title_full | Functional Integrals: Approximate Evaluation and Applications by A. D. Egorov, P. I. Sobolevsky, L. A. Yanovich |
title_fullStr | Functional Integrals: Approximate Evaluation and Applications by A. D. Egorov, P. I. Sobolevsky, L. A. Yanovich |
title_full_unstemmed | Functional Integrals: Approximate Evaluation and Applications by A. D. Egorov, P. I. Sobolevsky, L. A. Yanovich |
title_short | Functional Integrals: Approximate Evaluation and Applications |
title_sort | functional integrals approximate evaluation and applications |
topic | Mathematics Computer science / Mathematics Distribution (Probability theory) Quantum theory Computational Mathematics and Numerical Analysis Measure and Integration Probability Theory and Stochastic Processes Quantum Physics Elementary Particles, Quantum Field Theory Informatik Mathematik Quantentheorie Funktionalintegration (DE-588)4155674-4 gnd |
topic_facet | Mathematics Computer science / Mathematics Distribution (Probability theory) Quantum theory Computational Mathematics and Numerical Analysis Measure and Integration Probability Theory and Stochastic Processes Quantum Physics Elementary Particles, Quantum Field Theory Informatik Mathematik Quantentheorie Funktionalintegration |
url | https://doi.org/10.1007/978-94-011-1761-6 |
work_keys_str_mv | AT egorovad functionalintegralsapproximateevaluationandapplications AT sobolevskypi functionalintegralsapproximateevaluationandapplications AT yanovichla functionalintegralsapproximateevaluationandapplications |