The Hypergeometric Approach to Integral Transforms and Convolutions:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1994
|
Schriftenreihe: | Mathematics and Its Applications
287 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The aim of this book is to develop a new approach which we called the hypergeometric one to the theory of various integral transforms, convolutions, and their applications to solutions of integro-differential equations, operational calculus, and evaluation of integrals. We hope that this simple approach, which will be explained below, allows students, post graduates in mathematics, physicists and technicians, and serious mathematicians and researchers to find in this book new interesting results in the theory of integral transforms, special functions, and convolutions. The idea of this approach can be found in various papers of many authors, but systematic discussion and development is realized in this book for the first time. Let us explain briefly the basic points of this approach. As it is known, in the theory of special functions and its applications, the hypergeometric functions play the main role. Besides known elementary functions, this class includes the Gauss's, Bessel's, Kummer's, functions etc. In general case, the hypergeometric functions are defined as a linear combinations of the Mellin-Barnes integrals. These questions are extensively discussed in Chapter 1. Moreover, the Mellin-Barnes type integrals can be understood as an inversion Mellin transform from the quotient of products of Euler's gamma-functions. Thus we are led to the general constructions like the Meijer's G-function and the Fox's H-function |
Beschreibung: | 1 Online-Ressource (XI, 324 p) |
ISBN: | 9789401111966 9789401045230 |
DOI: | 10.1007/978-94-011-1196-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423848 | ||
003 | DE-604 | ||
005 | 20180109 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1994 |||| o||u| ||||||eng d | ||
020 | |a 9789401111966 |c Online |9 978-94-011-1196-6 | ||
020 | |a 9789401045230 |c Print |9 978-94-010-4523-0 | ||
024 | 7 | |a 10.1007/978-94-011-1196-6 |2 doi | |
035 | |a (OCoLC)863682713 | ||
035 | |a (DE-599)BVBBV042423848 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.72 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Yakubovich, Semen B. |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Hypergeometric Approach to Integral Transforms and Convolutions |c by Semen B. Yakubovich, Yurii F. Luchko |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1994 | |
300 | |a 1 Online-Ressource (XI, 324 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematics and Its Applications |v 287 | |
500 | |a The aim of this book is to develop a new approach which we called the hypergeometric one to the theory of various integral transforms, convolutions, and their applications to solutions of integro-differential equations, operational calculus, and evaluation of integrals. We hope that this simple approach, which will be explained below, allows students, post graduates in mathematics, physicists and technicians, and serious mathematicians and researchers to find in this book new interesting results in the theory of integral transforms, special functions, and convolutions. The idea of this approach can be found in various papers of many authors, but systematic discussion and development is realized in this book for the first time. Let us explain briefly the basic points of this approach. As it is known, in the theory of special functions and its applications, the hypergeometric functions play the main role. Besides known elementary functions, this class includes the Gauss's, Bessel's, Kummer's, functions etc. In general case, the hypergeometric functions are defined as a linear combinations of the Mellin-Barnes integrals. These questions are extensively discussed in Chapter 1. Moreover, the Mellin-Barnes type integrals can be understood as an inversion Mellin transform from the quotient of products of Euler's gamma-functions. Thus we are led to the general constructions like the Meijer's G-function and the Fox's H-function | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Integral equations | |
650 | 4 | |a Integral Transforms | |
650 | 4 | |a Functions, special | |
650 | 4 | |a Integral Transforms, Operational Calculus | |
650 | 4 | |a Special Functions | |
650 | 4 | |a Integral Equations | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Integraltransformation |0 (DE-588)4027235-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hypergeometrische Reihe |0 (DE-588)4161061-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hypergeometrische Reihe |0 (DE-588)4161061-1 |D s |
689 | 0 | 1 | |a Integraltransformation |0 (DE-588)4027235-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Luchko, Yurii F. |e Sonstige |4 oth | |
830 | 0 | |a Mathematics and Its Applications |v 287 |w (DE-604)BV008163334 |9 287 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-011-1196-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859265 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153100090474496 |
---|---|
any_adam_object | |
author | Yakubovich, Semen B. |
author_facet | Yakubovich, Semen B. |
author_role | aut |
author_sort | Yakubovich, Semen B. |
author_variant | s b y sb sby |
building | Verbundindex |
bvnumber | BV042423848 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863682713 (DE-599)BVBBV042423848 |
dewey-full | 515.72 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.72 |
dewey-search | 515.72 |
dewey-sort | 3515.72 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-011-1196-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03454nmm a2200553zcb4500</leader><controlfield tag="001">BV042423848</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180109 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401111966</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-011-1196-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401045230</subfield><subfield code="c">Print</subfield><subfield code="9">978-94-010-4523-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-011-1196-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863682713</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423848</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.72</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yakubovich, Semen B.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Hypergeometric Approach to Integral Transforms and Convolutions</subfield><subfield code="c">by Semen B. Yakubovich, Yurii F. Luchko</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 324 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">287</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The aim of this book is to develop a new approach which we called the hypergeometric one to the theory of various integral transforms, convolutions, and their applications to solutions of integro-differential equations, operational calculus, and evaluation of integrals. We hope that this simple approach, which will be explained below, allows students, post graduates in mathematics, physicists and technicians, and serious mathematicians and researchers to find in this book new interesting results in the theory of integral transforms, special functions, and convolutions. The idea of this approach can be found in various papers of many authors, but systematic discussion and development is realized in this book for the first time. Let us explain briefly the basic points of this approach. As it is known, in the theory of special functions and its applications, the hypergeometric functions play the main role. Besides known elementary functions, this class includes the Gauss's, Bessel's, Kummer's, functions etc. In general case, the hypergeometric functions are defined as a linear combinations of the Mellin-Barnes integrals. These questions are extensively discussed in Chapter 1. Moreover, the Mellin-Barnes type integrals can be understood as an inversion Mellin transform from the quotient of products of Euler's gamma-functions. Thus we are led to the general constructions like the Meijer's G-function and the Fox's H-function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Transforms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions, special</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Transforms, Operational Calculus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Special Functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integraltransformation</subfield><subfield code="0">(DE-588)4027235-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hypergeometrische Reihe</subfield><subfield code="0">(DE-588)4161061-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hypergeometrische Reihe</subfield><subfield code="0">(DE-588)4161061-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Integraltransformation</subfield><subfield code="0">(DE-588)4027235-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luchko, Yurii F.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">287</subfield><subfield code="w">(DE-604)BV008163334</subfield><subfield code="9">287</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-011-1196-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859265</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423848 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:14Z |
institution | BVB |
isbn | 9789401111966 9789401045230 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859265 |
oclc_num | 863682713 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XI, 324 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Springer Netherlands |
record_format | marc |
series | Mathematics and Its Applications |
series2 | Mathematics and Its Applications |
spelling | Yakubovich, Semen B. Verfasser aut The Hypergeometric Approach to Integral Transforms and Convolutions by Semen B. Yakubovich, Yurii F. Luchko Dordrecht Springer Netherlands 1994 1 Online-Ressource (XI, 324 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 287 The aim of this book is to develop a new approach which we called the hypergeometric one to the theory of various integral transforms, convolutions, and their applications to solutions of integro-differential equations, operational calculus, and evaluation of integrals. We hope that this simple approach, which will be explained below, allows students, post graduates in mathematics, physicists and technicians, and serious mathematicians and researchers to find in this book new interesting results in the theory of integral transforms, special functions, and convolutions. The idea of this approach can be found in various papers of many authors, but systematic discussion and development is realized in this book for the first time. Let us explain briefly the basic points of this approach. As it is known, in the theory of special functions and its applications, the hypergeometric functions play the main role. Besides known elementary functions, this class includes the Gauss's, Bessel's, Kummer's, functions etc. In general case, the hypergeometric functions are defined as a linear combinations of the Mellin-Barnes integrals. These questions are extensively discussed in Chapter 1. Moreover, the Mellin-Barnes type integrals can be understood as an inversion Mellin transform from the quotient of products of Euler's gamma-functions. Thus we are led to the general constructions like the Meijer's G-function and the Fox's H-function Mathematics Integral equations Integral Transforms Functions, special Integral Transforms, Operational Calculus Special Functions Integral Equations Mathematik Integraltransformation (DE-588)4027235-7 gnd rswk-swf Hypergeometrische Reihe (DE-588)4161061-1 gnd rswk-swf Hypergeometrische Reihe (DE-588)4161061-1 s Integraltransformation (DE-588)4027235-7 s 1\p DE-604 Luchko, Yurii F. Sonstige oth Mathematics and Its Applications 287 (DE-604)BV008163334 287 https://doi.org/10.1007/978-94-011-1196-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Yakubovich, Semen B. The Hypergeometric Approach to Integral Transforms and Convolutions Mathematics and Its Applications Mathematics Integral equations Integral Transforms Functions, special Integral Transforms, Operational Calculus Special Functions Integral Equations Mathematik Integraltransformation (DE-588)4027235-7 gnd Hypergeometrische Reihe (DE-588)4161061-1 gnd |
subject_GND | (DE-588)4027235-7 (DE-588)4161061-1 |
title | The Hypergeometric Approach to Integral Transforms and Convolutions |
title_auth | The Hypergeometric Approach to Integral Transforms and Convolutions |
title_exact_search | The Hypergeometric Approach to Integral Transforms and Convolutions |
title_full | The Hypergeometric Approach to Integral Transforms and Convolutions by Semen B. Yakubovich, Yurii F. Luchko |
title_fullStr | The Hypergeometric Approach to Integral Transforms and Convolutions by Semen B. Yakubovich, Yurii F. Luchko |
title_full_unstemmed | The Hypergeometric Approach to Integral Transforms and Convolutions by Semen B. Yakubovich, Yurii F. Luchko |
title_short | The Hypergeometric Approach to Integral Transforms and Convolutions |
title_sort | the hypergeometric approach to integral transforms and convolutions |
topic | Mathematics Integral equations Integral Transforms Functions, special Integral Transforms, Operational Calculus Special Functions Integral Equations Mathematik Integraltransformation (DE-588)4027235-7 gnd Hypergeometrische Reihe (DE-588)4161061-1 gnd |
topic_facet | Mathematics Integral equations Integral Transforms Functions, special Integral Transforms, Operational Calculus Special Functions Integral Equations Mathematik Integraltransformation Hypergeometrische Reihe |
url | https://doi.org/10.1007/978-94-011-1196-6 |
volume_link | (DE-604)BV008163334 |
work_keys_str_mv | AT yakubovichsemenb thehypergeometricapproachtointegraltransformsandconvolutions AT luchkoyuriif thehypergeometricapproachtointegraltransformsandconvolutions |