Introduction to the Theory of Singular Integral Operators with Shift:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1994
|
Schriftenreihe: | Mathematics and Its Applications
289 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | problem (0. 2) was the same u that of problem (0. 1). Incidentally, later on Mandzhavidze and Khvedclidze (I) and Simonenko (I) achieved a direct reduction of problem (0. 2) to problem (0. 1) with the help of conformal mappings. Apparenlly, the first paper in which SIES were considered was the paper by Vekua (2) published in 1948. Vekua verified that the equation (0. 3) where (1; € C(f), 5 is the operator of 'ingular integration with a Cauchy kernel (Srp)(!) "" (". i)-I fr(T - t)-lrp(T)dT, W is the shift operator (WrpHt) = rp{a(t», in the case 01 = - (13,0, = 0. , could be reduced to problem (0. 2). We note thai, in problem (0. 2), the shift ott) need not be a Carlemao shift, . ei. , it is oot necessary that a . . (t) :::: t for some integer 11 ~ 2, where ai(l) "" o(ok_dt)), 0(1(1) ::::!. For the first time, the condition 0,(1) == 1 appeared in BPAFS theory in connection with the study of the problem (0. 4) by Carle man (2) who, in particular, showed that problem (0. 4) Wall a natural generalization of the problem on the existence of an a. utomorphic function belonging to a certain group of Fucs. Thus, the paper by Vckua (2) is also the fint paper in which a singular integral equation with a non·Carieman 5hifl is on c sidered |
Beschreibung: | 1 Online-Ressource (XVI, 288 p) |
ISBN: | 9789401111805 9789401045155 |
DOI: | 10.1007/978-94-011-1180-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423844 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1994 |||| o||u| ||||||eng d | ||
020 | |a 9789401111805 |c Online |9 978-94-011-1180-5 | ||
020 | |a 9789401045155 |c Print |9 978-94-010-4515-5 | ||
024 | 7 | |a 10.1007/978-94-011-1180-5 |2 doi | |
035 | |a (OCoLC)1184379148 | ||
035 | |a (DE-599)BVBBV042423844 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.45 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Kravchenko, Victor G. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to the Theory of Singular Integral Operators with Shift |c by Victor G. Kravchenko, Georgii S. Litvinchuk |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1994 | |
300 | |a 1 Online-Ressource (XVI, 288 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and Its Applications |v 289 | |
500 | |a problem (0. 2) was the same u that of problem (0. 1). Incidentally, later on Mandzhavidze and Khvedclidze (I) and Simonenko (I) achieved a direct reduction of problem (0. 2) to problem (0. 1) with the help of conformal mappings. Apparenlly, the first paper in which SIES were considered was the paper by Vekua (2) published in 1948. Vekua verified that the equation (0. 3) where (1; € C(f), 5 is the operator of 'ingular integration with a Cauchy kernel (Srp)(!) "" (". i)-I fr(T - t)-lrp(T)dT, W is the shift operator (WrpHt) = rp{a(t», in the case 01 = - (13,0, = 0. , could be reduced to problem (0. 2). We note thai, in problem (0. 2), the shift ott) need not be a Carlemao shift, . ei. , it is oot necessary that a . . (t) :::: t for some integer 11 ~ 2, where ai(l) "" o(ok_dt)), 0(1(1) ::::!. For the first time, the condition 0,(1) == 1 appeared in BPAFS theory in connection with the study of the problem (0. 4) by Carle man (2) who, in particular, showed that problem (0. 4) Wall a natural generalization of the problem on the existence of an a. utomorphic function belonging to a certain group of Fucs. Thus, the paper by Vckua (2) is also the fint paper in which a singular integral equation with a non·Carieman 5hifl is on c sidered | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Functional equations | |
650 | 4 | |a Functions of complex variables | |
650 | 4 | |a Integral equations | |
650 | 4 | |a Operator theory | |
650 | 4 | |a Functions, special | |
650 | 4 | |a Integral Equations | |
650 | 4 | |a Operator Theory | |
650 | 4 | |a Difference and Functional Equations | |
650 | 4 | |a Special Functions | |
650 | 4 | |a Functions of a Complex Variable | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Verschiebungsoperator |0 (DE-588)4121862-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Singulärer Integraloperator |0 (DE-588)4131249-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Singulärer Integraloperator |0 (DE-588)4131249-1 |D s |
689 | 0 | 1 | |a Verschiebungsoperator |0 (DE-588)4121862-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Litvinchuk, Georgii S. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-011-1180-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859261 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153100079988736 |
---|---|
any_adam_object | |
author | Kravchenko, Victor G. |
author_facet | Kravchenko, Victor G. |
author_role | aut |
author_sort | Kravchenko, Victor G. |
author_variant | v g k vg vgk |
building | Verbundindex |
bvnumber | BV042423844 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184379148 (DE-599)BVBBV042423844 |
dewey-full | 515.45 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.45 |
dewey-search | 515.45 |
dewey-sort | 3515.45 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-011-1180-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03356nmm a2200589zcb4500</leader><controlfield tag="001">BV042423844</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401111805</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-011-1180-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401045155</subfield><subfield code="c">Print</subfield><subfield code="9">978-94-010-4515-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-011-1180-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184379148</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423844</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.45</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kravchenko, Victor G.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to the Theory of Singular Integral Operators with Shift</subfield><subfield code="c">by Victor G. Kravchenko, Georgii S. Litvinchuk</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 288 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">289</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">problem (0. 2) was the same u that of problem (0. 1). Incidentally, later on Mandzhavidze and Khvedclidze (I) and Simonenko (I) achieved a direct reduction of problem (0. 2) to problem (0. 1) with the help of conformal mappings. Apparenlly, the first paper in which SIES were considered was the paper by Vekua (2) published in 1948. Vekua verified that the equation (0. 3) where (1; € C(f), 5 is the operator of 'ingular integration with a Cauchy kernel (Srp)(!) "" (". i)-I fr(T - t)-lrp(T)dT, W is the shift operator (WrpHt) = rp{a(t», in the case 01 = - (13,0, = 0. , could be reduced to problem (0. 2). We note thai, in problem (0. 2), the shift ott) need not be a Carlemao shift, . ei. , it is oot necessary that a . . (t) :::: t for some integer 11 ~ 2, where ai(l) "" o(ok_dt)), 0(1(1) ::::!. For the first time, the condition 0,(1) == 1 appeared in BPAFS theory in connection with the study of the problem (0. 4) by Carle man (2) who, in particular, showed that problem (0. 4) Wall a natural generalization of the problem on the existence of an a. utomorphic function belonging to a certain group of Fucs. Thus, the paper by Vckua (2) is also the fint paper in which a singular integral equation with a non·Carieman 5hifl is on c sidered</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of complex variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions, special</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Difference and Functional Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Special Functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of a Complex Variable</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verschiebungsoperator</subfield><subfield code="0">(DE-588)4121862-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Singulärer Integraloperator</subfield><subfield code="0">(DE-588)4131249-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Singulärer Integraloperator</subfield><subfield code="0">(DE-588)4131249-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Verschiebungsoperator</subfield><subfield code="0">(DE-588)4121862-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Litvinchuk, Georgii S.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-011-1180-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859261</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423844 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:14Z |
institution | BVB |
isbn | 9789401111805 9789401045155 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859261 |
oclc_num | 1184379148 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVI, 288 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Mathematics and Its Applications |
spelling | Kravchenko, Victor G. Verfasser aut Introduction to the Theory of Singular Integral Operators with Shift by Victor G. Kravchenko, Georgii S. Litvinchuk Dordrecht Springer Netherlands 1994 1 Online-Ressource (XVI, 288 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 289 problem (0. 2) was the same u that of problem (0. 1). Incidentally, later on Mandzhavidze and Khvedclidze (I) and Simonenko (I) achieved a direct reduction of problem (0. 2) to problem (0. 1) with the help of conformal mappings. Apparenlly, the first paper in which SIES were considered was the paper by Vekua (2) published in 1948. Vekua verified that the equation (0. 3) where (1; € C(f), 5 is the operator of 'ingular integration with a Cauchy kernel (Srp)(!) "" (". i)-I fr(T - t)-lrp(T)dT, W is the shift operator (WrpHt) = rp{a(t», in the case 01 = - (13,0, = 0. , could be reduced to problem (0. 2). We note thai, in problem (0. 2), the shift ott) need not be a Carlemao shift, . ei. , it is oot necessary that a . . (t) :::: t for some integer 11 ~ 2, where ai(l) "" o(ok_dt)), 0(1(1) ::::!. For the first time, the condition 0,(1) == 1 appeared in BPAFS theory in connection with the study of the problem (0. 4) by Carle man (2) who, in particular, showed that problem (0. 4) Wall a natural generalization of the problem on the existence of an a. utomorphic function belonging to a certain group of Fucs. Thus, the paper by Vckua (2) is also the fint paper in which a singular integral equation with a non·Carieman 5hifl is on c sidered Mathematics Functional equations Functions of complex variables Integral equations Operator theory Functions, special Integral Equations Operator Theory Difference and Functional Equations Special Functions Functions of a Complex Variable Mathematik Verschiebungsoperator (DE-588)4121862-0 gnd rswk-swf Singulärer Integraloperator (DE-588)4131249-1 gnd rswk-swf Singulärer Integraloperator (DE-588)4131249-1 s Verschiebungsoperator (DE-588)4121862-0 s 1\p DE-604 Litvinchuk, Georgii S. Sonstige oth https://doi.org/10.1007/978-94-011-1180-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kravchenko, Victor G. Introduction to the Theory of Singular Integral Operators with Shift Mathematics Functional equations Functions of complex variables Integral equations Operator theory Functions, special Integral Equations Operator Theory Difference and Functional Equations Special Functions Functions of a Complex Variable Mathematik Verschiebungsoperator (DE-588)4121862-0 gnd Singulärer Integraloperator (DE-588)4131249-1 gnd |
subject_GND | (DE-588)4121862-0 (DE-588)4131249-1 |
title | Introduction to the Theory of Singular Integral Operators with Shift |
title_auth | Introduction to the Theory of Singular Integral Operators with Shift |
title_exact_search | Introduction to the Theory of Singular Integral Operators with Shift |
title_full | Introduction to the Theory of Singular Integral Operators with Shift by Victor G. Kravchenko, Georgii S. Litvinchuk |
title_fullStr | Introduction to the Theory of Singular Integral Operators with Shift by Victor G. Kravchenko, Georgii S. Litvinchuk |
title_full_unstemmed | Introduction to the Theory of Singular Integral Operators with Shift by Victor G. Kravchenko, Georgii S. Litvinchuk |
title_short | Introduction to the Theory of Singular Integral Operators with Shift |
title_sort | introduction to the theory of singular integral operators with shift |
topic | Mathematics Functional equations Functions of complex variables Integral equations Operator theory Functions, special Integral Equations Operator Theory Difference and Functional Equations Special Functions Functions of a Complex Variable Mathematik Verschiebungsoperator (DE-588)4121862-0 gnd Singulärer Integraloperator (DE-588)4131249-1 gnd |
topic_facet | Mathematics Functional equations Functions of complex variables Integral equations Operator theory Functions, special Integral Equations Operator Theory Difference and Functional Equations Special Functions Functions of a Complex Variable Mathematik Verschiebungsoperator Singulärer Integraloperator |
url | https://doi.org/10.1007/978-94-011-1180-5 |
work_keys_str_mv | AT kravchenkovictorg introductiontothetheoryofsingularintegraloperatorswithshift AT litvinchukgeorgiis introductiontothetheoryofsingularintegraloperatorswithshift |