Nonlinear Symmetries and Nonlinear Equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1994
|
Schriftenreihe: | Mathematics and Its Applications
299 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The study of (nonlinear) dift"erential equations was S. Lie's motivation when he created what is now known as Lie groups and Lie algebras; nevertheless, although Lie group and algebra theory flourished and was applied to a number of different physical situations -up to the point that a lot, if not most, of current fundamental elementary particles physics is actually (physical interpretation of) group theory -the application of symmetry methods to differential equations remained a sleeping beauty for many, many years. The main reason for this lies probably in a fact that is quite clear to any beginner in the field. Namely, the formidable comple:rity ofthe (algebraic, not numerical!) computations involved in Lie method. I think this does not account completely for this oblivion: in other fields of Physics very hard analytical computations have been worked through; anyway, one easily understands that systems of dOlens of coupled PDEs do not seem very attractive, nor a very practical computational tool |
Beschreibung: | 1 Online-Ressource (XIX, 258 p) |
ISBN: | 9789401110181 9789401044431 |
DOI: | 10.1007/978-94-011-1018-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423836 | ||
003 | DE-604 | ||
005 | 20180126 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1994 |||| o||u| ||||||eng d | ||
020 | |a 9789401110181 |c Online |9 978-94-011-1018-1 | ||
020 | |a 9789401044431 |c Print |9 978-94-010-4443-1 | ||
024 | 7 | |a 10.1007/978-94-011-1018-1 |2 doi | |
035 | |a (OCoLC)1184339348 | ||
035 | |a (DE-599)BVBBV042423836 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.352 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Gaeta, Giuseppe |e Verfasser |4 aut | |
245 | 1 | 0 | |a Nonlinear Symmetries and Nonlinear Equations |c by Giuseppe Gaeta |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1994 | |
300 | |a 1 Online-Ressource (XIX, 258 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematics and Its Applications |v 299 | |
500 | |a The study of (nonlinear) dift"erential equations was S. Lie's motivation when he created what is now known as Lie groups and Lie algebras; nevertheless, although Lie group and algebra theory flourished and was applied to a number of different physical situations -up to the point that a lot, if not most, of current fundamental elementary particles physics is actually (physical interpretation of) group theory -the application of symmetry methods to differential equations remained a sleeping beauty for many, many years. The main reason for this lies probably in a fact that is quite clear to any beginner in the field. Namely, the formidable comple:rity ofthe (algebraic, not numerical!) computations involved in Lie method. I think this does not account completely for this oblivion: in other fields of Physics very hard analytical computations have been worked through; anyway, one easily understands that systems of dOlens of coupled PDEs do not seem very attractive, nor a very practical computational tool | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Differential Equations | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Ordinary Differential Equations | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Nichtlineare algebraische Gleichung |0 (DE-588)4298314-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Symmetrie |0 (DE-588)4058724-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Differentialgleichung |0 (DE-588)4205536-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlineare algebraische Gleichung |0 (DE-588)4298314-9 |D s |
689 | 0 | 1 | |a Symmetrie |0 (DE-588)4058724-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Nichtlineare Differentialgleichung |0 (DE-588)4205536-2 |D s |
689 | 1 | 1 | |a Symmetrie |0 (DE-588)4058724-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
830 | 0 | |a Mathematics and Its Applications |v 299 |w (DE-604)BV008163334 |9 299 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-011-1018-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859253 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153100070551552 |
---|---|
any_adam_object | |
author | Gaeta, Giuseppe |
author_facet | Gaeta, Giuseppe |
author_role | aut |
author_sort | Gaeta, Giuseppe |
author_variant | g g gg |
building | Verbundindex |
bvnumber | BV042423836 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184339348 (DE-599)BVBBV042423836 |
dewey-full | 515.352 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.352 |
dewey-search | 515.352 |
dewey-sort | 3515.352 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-011-1018-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03261nmm a2200589zcb4500</leader><controlfield tag="001">BV042423836</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180126 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401110181</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-011-1018-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401044431</subfield><subfield code="c">Print</subfield><subfield code="9">978-94-010-4443-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-011-1018-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184339348</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423836</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.352</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gaeta, Giuseppe</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear Symmetries and Nonlinear Equations</subfield><subfield code="c">by Giuseppe Gaeta</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIX, 258 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">299</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The study of (nonlinear) dift"erential equations was S. Lie's motivation when he created what is now known as Lie groups and Lie algebras; nevertheless, although Lie group and algebra theory flourished and was applied to a number of different physical situations -up to the point that a lot, if not most, of current fundamental elementary particles physics is actually (physical interpretation of) group theory -the application of symmetry methods to differential equations remained a sleeping beauty for many, many years. The main reason for this lies probably in a fact that is quite clear to any beginner in the field. Namely, the formidable comple:rity ofthe (algebraic, not numerical!) computations involved in Lie method. I think this does not account completely for this oblivion: in other fields of Physics very hard analytical computations have been worked through; anyway, one easily understands that systems of dOlens of coupled PDEs do not seem very attractive, nor a very practical computational tool</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordinary Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare algebraische Gleichung</subfield><subfield code="0">(DE-588)4298314-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symmetrie</subfield><subfield code="0">(DE-588)4058724-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Differentialgleichung</subfield><subfield code="0">(DE-588)4205536-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare algebraische Gleichung</subfield><subfield code="0">(DE-588)4298314-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Symmetrie</subfield><subfield code="0">(DE-588)4058724-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Nichtlineare Differentialgleichung</subfield><subfield code="0">(DE-588)4205536-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Symmetrie</subfield><subfield code="0">(DE-588)4058724-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">299</subfield><subfield code="w">(DE-604)BV008163334</subfield><subfield code="9">299</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-011-1018-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859253</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423836 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:14Z |
institution | BVB |
isbn | 9789401110181 9789401044431 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859253 |
oclc_num | 1184339348 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIX, 258 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Springer Netherlands |
record_format | marc |
series | Mathematics and Its Applications |
series2 | Mathematics and Its Applications |
spelling | Gaeta, Giuseppe Verfasser aut Nonlinear Symmetries and Nonlinear Equations by Giuseppe Gaeta Dordrecht Springer Netherlands 1994 1 Online-Ressource (XIX, 258 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 299 The study of (nonlinear) dift"erential equations was S. Lie's motivation when he created what is now known as Lie groups and Lie algebras; nevertheless, although Lie group and algebra theory flourished and was applied to a number of different physical situations -up to the point that a lot, if not most, of current fundamental elementary particles physics is actually (physical interpretation of) group theory -the application of symmetry methods to differential equations remained a sleeping beauty for many, many years. The main reason for this lies probably in a fact that is quite clear to any beginner in the field. Namely, the formidable comple:rity ofthe (algebraic, not numerical!) computations involved in Lie method. I think this does not account completely for this oblivion: in other fields of Physics very hard analytical computations have been worked through; anyway, one easily understands that systems of dOlens of coupled PDEs do not seem very attractive, nor a very practical computational tool Mathematics Differential Equations Differential equations, partial Ordinary Differential Equations Partial Differential Equations Theoretical, Mathematical and Computational Physics Mathematik Nichtlineare algebraische Gleichung (DE-588)4298314-9 gnd rswk-swf Symmetrie (DE-588)4058724-1 gnd rswk-swf Nichtlineare Differentialgleichung (DE-588)4205536-2 gnd rswk-swf Nichtlineare algebraische Gleichung (DE-588)4298314-9 s Symmetrie (DE-588)4058724-1 s 1\p DE-604 Nichtlineare Differentialgleichung (DE-588)4205536-2 s 2\p DE-604 Mathematics and Its Applications 299 (DE-604)BV008163334 299 https://doi.org/10.1007/978-94-011-1018-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Gaeta, Giuseppe Nonlinear Symmetries and Nonlinear Equations Mathematics and Its Applications Mathematics Differential Equations Differential equations, partial Ordinary Differential Equations Partial Differential Equations Theoretical, Mathematical and Computational Physics Mathematik Nichtlineare algebraische Gleichung (DE-588)4298314-9 gnd Symmetrie (DE-588)4058724-1 gnd Nichtlineare Differentialgleichung (DE-588)4205536-2 gnd |
subject_GND | (DE-588)4298314-9 (DE-588)4058724-1 (DE-588)4205536-2 |
title | Nonlinear Symmetries and Nonlinear Equations |
title_auth | Nonlinear Symmetries and Nonlinear Equations |
title_exact_search | Nonlinear Symmetries and Nonlinear Equations |
title_full | Nonlinear Symmetries and Nonlinear Equations by Giuseppe Gaeta |
title_fullStr | Nonlinear Symmetries and Nonlinear Equations by Giuseppe Gaeta |
title_full_unstemmed | Nonlinear Symmetries and Nonlinear Equations by Giuseppe Gaeta |
title_short | Nonlinear Symmetries and Nonlinear Equations |
title_sort | nonlinear symmetries and nonlinear equations |
topic | Mathematics Differential Equations Differential equations, partial Ordinary Differential Equations Partial Differential Equations Theoretical, Mathematical and Computational Physics Mathematik Nichtlineare algebraische Gleichung (DE-588)4298314-9 gnd Symmetrie (DE-588)4058724-1 gnd Nichtlineare Differentialgleichung (DE-588)4205536-2 gnd |
topic_facet | Mathematics Differential Equations Differential equations, partial Ordinary Differential Equations Partial Differential Equations Theoretical, Mathematical and Computational Physics Mathematik Nichtlineare algebraische Gleichung Symmetrie Nichtlineare Differentialgleichung |
url | https://doi.org/10.1007/978-94-011-1018-1 |
volume_link | (DE-604)BV008163334 |
work_keys_str_mv | AT gaetagiuseppe nonlinearsymmetriesandnonlinearequations |