Semi-Markov Random Evolutions:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1995
|
Schriftenreihe: | Mathematics and Its Applications
308 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The evolution of systems in random media is a broad and fruitful field for the applications of different mathematical methods and theories. This evolution can be characterized by a semigroup property. In the abstract form, this property is given by a semigroup of operators in a normed vector (Banach) space. In the practically boundless variety of mathematical models of the evolutionary systems, we have chosen the semi-Markov random evolutions as an object of our consideration. The definition of the evolutions of this type is based on rather simple initial assumptions. The random medium is described by the Markov renewal processes or by the semiMarkov processes. The local characteristics of the system depend on the state of the random medium. At the same time, the evolution of the system does not affect the medium. Hence, the semi-Markov random evolutions are described by two processes, namely, by the switching Markov renewal process, which describes the changes of the state of the external random medium, and by the switched process, i.e., by the semigroup of operators describing the evolution of the system in the semi-Markov random medium |
Beschreibung: | 1 Online-Ressource (X, 310 p) |
ISBN: | 9789401110105 9789401044394 |
DOI: | 10.1007/978-94-011-1010-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423835 | ||
003 | DE-604 | ||
005 | 20180110 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1995 |||| o||u| ||||||eng d | ||
020 | |a 9789401110105 |c Online |9 978-94-011-1010-5 | ||
020 | |a 9789401044394 |c Print |9 978-94-010-4439-4 | ||
024 | 7 | |a 10.1007/978-94-011-1010-5 |2 doi | |
035 | |a (OCoLC)1165441922 | ||
035 | |a (DE-599)BVBBV042423835 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.5 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Korolyuk, V. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Semi-Markov Random Evolutions |c by V. Korolyuk, A. Swishchuk |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1995 | |
300 | |a 1 Online-Ressource (X, 310 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematics and Its Applications |v 308 | |
500 | |a The evolution of systems in random media is a broad and fruitful field for the applications of different mathematical methods and theories. This evolution can be characterized by a semigroup property. In the abstract form, this property is given by a semigroup of operators in a normed vector (Banach) space. In the practically boundless variety of mathematical models of the evolutionary systems, we have chosen the semi-Markov random evolutions as an object of our consideration. The definition of the evolutions of this type is based on rather simple initial assumptions. The random medium is described by the Markov renewal processes or by the semiMarkov processes. The local characteristics of the system depend on the state of the random medium. At the same time, the evolution of the system does not affect the medium. Hence, the semi-Markov random evolutions are described by two processes, namely, by the switching Markov renewal process, which describes the changes of the state of the external random medium, and by the switched process, i.e., by the semigroup of operators describing the evolution of the system in the semi-Markov random medium | ||
650 | 4 | |a Statistics | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Integral equations | |
650 | 4 | |a Operator theory | |
650 | 4 | |a Systems theory | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Statistics, general | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Integral Equations | |
650 | 4 | |a Operator Theory | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Systems Theory, Control | |
650 | 4 | |a Statistik | |
650 | 0 | 7 | |a Semi-Markov-Prozess |0 (DE-588)4180965-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Semi-Markov-Prozess |0 (DE-588)4180965-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Swishchuk, A. |e Sonstige |4 oth | |
830 | 0 | |a Mathematics and Its Applications |v 308 |w (DE-604)BV008163334 |9 308 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-011-1010-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859252 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153100072648704 |
---|---|
any_adam_object | |
author | Korolyuk, V. |
author_facet | Korolyuk, V. |
author_role | aut |
author_sort | Korolyuk, V. |
author_variant | v k vk |
building | Verbundindex |
bvnumber | BV042423835 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165441922 (DE-599)BVBBV042423835 |
dewey-full | 519.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5 |
dewey-search | 519.5 |
dewey-sort | 3519.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-011-1010-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03151nmm a2200589zcb4500</leader><controlfield tag="001">BV042423835</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180110 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401110105</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-011-1010-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401044394</subfield><subfield code="c">Print</subfield><subfield code="9">978-94-010-4439-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-011-1010-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165441922</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423835</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Korolyuk, V.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Semi-Markov Random Evolutions</subfield><subfield code="c">by V. Korolyuk, A. Swishchuk</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 310 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">308</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The evolution of systems in random media is a broad and fruitful field for the applications of different mathematical methods and theories. This evolution can be characterized by a semigroup property. In the abstract form, this property is given by a semigroup of operators in a normed vector (Banach) space. In the practically boundless variety of mathematical models of the evolutionary systems, we have chosen the semi-Markov random evolutions as an object of our consideration. The definition of the evolutions of this type is based on rather simple initial assumptions. The random medium is described by the Markov renewal processes or by the semiMarkov processes. The local characteristics of the system depend on the state of the random medium. At the same time, the evolution of the system does not affect the medium. Hence, the semi-Markov random evolutions are described by two processes, namely, by the switching Markov renewal process, which describes the changes of the state of the external random medium, and by the switched process, i.e., by the semigroup of operators describing the evolution of the system in the semi-Markov random medium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems Theory, Control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Semi-Markov-Prozess</subfield><subfield code="0">(DE-588)4180965-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Semi-Markov-Prozess</subfield><subfield code="0">(DE-588)4180965-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Swishchuk, A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">308</subfield><subfield code="w">(DE-604)BV008163334</subfield><subfield code="9">308</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-011-1010-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859252</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423835 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:14Z |
institution | BVB |
isbn | 9789401110105 9789401044394 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859252 |
oclc_num | 1165441922 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 310 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Springer Netherlands |
record_format | marc |
series | Mathematics and Its Applications |
series2 | Mathematics and Its Applications |
spelling | Korolyuk, V. Verfasser aut Semi-Markov Random Evolutions by V. Korolyuk, A. Swishchuk Dordrecht Springer Netherlands 1995 1 Online-Ressource (X, 310 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 308 The evolution of systems in random media is a broad and fruitful field for the applications of different mathematical methods and theories. This evolution can be characterized by a semigroup property. In the abstract form, this property is given by a semigroup of operators in a normed vector (Banach) space. In the practically boundless variety of mathematical models of the evolutionary systems, we have chosen the semi-Markov random evolutions as an object of our consideration. The definition of the evolutions of this type is based on rather simple initial assumptions. The random medium is described by the Markov renewal processes or by the semiMarkov processes. The local characteristics of the system depend on the state of the random medium. At the same time, the evolution of the system does not affect the medium. Hence, the semi-Markov random evolutions are described by two processes, namely, by the switching Markov renewal process, which describes the changes of the state of the external random medium, and by the switched process, i.e., by the semigroup of operators describing the evolution of the system in the semi-Markov random medium Statistics Functional analysis Integral equations Operator theory Systems theory Distribution (Probability theory) Statistics, general Probability Theory and Stochastic Processes Integral Equations Operator Theory Functional Analysis Systems Theory, Control Statistik Semi-Markov-Prozess (DE-588)4180965-8 gnd rswk-swf Semi-Markov-Prozess (DE-588)4180965-8 s 1\p DE-604 Swishchuk, A. Sonstige oth Mathematics and Its Applications 308 (DE-604)BV008163334 308 https://doi.org/10.1007/978-94-011-1010-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Korolyuk, V. Semi-Markov Random Evolutions Mathematics and Its Applications Statistics Functional analysis Integral equations Operator theory Systems theory Distribution (Probability theory) Statistics, general Probability Theory and Stochastic Processes Integral Equations Operator Theory Functional Analysis Systems Theory, Control Statistik Semi-Markov-Prozess (DE-588)4180965-8 gnd |
subject_GND | (DE-588)4180965-8 |
title | Semi-Markov Random Evolutions |
title_auth | Semi-Markov Random Evolutions |
title_exact_search | Semi-Markov Random Evolutions |
title_full | Semi-Markov Random Evolutions by V. Korolyuk, A. Swishchuk |
title_fullStr | Semi-Markov Random Evolutions by V. Korolyuk, A. Swishchuk |
title_full_unstemmed | Semi-Markov Random Evolutions by V. Korolyuk, A. Swishchuk |
title_short | Semi-Markov Random Evolutions |
title_sort | semi markov random evolutions |
topic | Statistics Functional analysis Integral equations Operator theory Systems theory Distribution (Probability theory) Statistics, general Probability Theory and Stochastic Processes Integral Equations Operator Theory Functional Analysis Systems Theory, Control Statistik Semi-Markov-Prozess (DE-588)4180965-8 gnd |
topic_facet | Statistics Functional analysis Integral equations Operator theory Systems theory Distribution (Probability theory) Statistics, general Probability Theory and Stochastic Processes Integral Equations Operator Theory Functional Analysis Systems Theory, Control Statistik Semi-Markov-Prozess |
url | https://doi.org/10.1007/978-94-011-1010-5 |
volume_link | (DE-604)BV008163334 |
work_keys_str_mv | AT korolyukv semimarkovrandomevolutions AT swishchuka semimarkovrandomevolutions |