Banach Space Complexes:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1995
|
Schriftenreihe: | Mathematics and Its Applications
334 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The aim of this work is to initiate a systematic study of those properties of Banach space complexes that are stable under certain perturbations. A Banach space complex is essentially an object of the form 1 op-l oP +1 ... --+ XP- --+ XP --+ XP --+ ... , where p runs a finite or infiniteinterval ofintegers, XP are Banach spaces, and oP : Xp ..... Xp+1 are continuous linear operators such that OPOp-1 = 0 for all indices p. In particular, every continuous linear operator S : X ..... Y, where X, Yare Banach spaces, may be regarded as a complex: O ..... X ~ Y ..... O. The already existing Fredholm theory for linear operators suggested the possibility to extend its concepts and methods to the study of Banach space complexes. The basic stability properties valid for (semi-) Fredholm operators have their counterparts in the more general context of Banach space complexes. We have in mind especially the stability of the index (i.e., the extended Euler characteristic) under small or compact perturbations, but other related stability results can also be successfully extended. Banach (or Hilbert) space complexes have penetrated the functional analysis from at least two apparently disjoint directions. A first direction is related to the multivariable spectral theory in the sense of J. L. |
Beschreibung: | 1 Online-Ressource (V, 213 p) |
ISBN: | 9789401103756 9789401041683 |
DOI: | 10.1007/978-94-011-0375-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423818 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1995 |||| o||u| ||||||eng d | ||
020 | |a 9789401103756 |c Online |9 978-94-011-0375-6 | ||
020 | |a 9789401041683 |c Print |9 978-94-010-4168-3 | ||
024 | 7 | |a 10.1007/978-94-011-0375-6 |2 doi | |
035 | |a (OCoLC)1184431118 | ||
035 | |a (DE-599)BVBBV042423818 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.724 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Ambrozie, Cǎlin-Grigore |e Verfasser |4 aut | |
245 | 1 | 0 | |a Banach Space Complexes |c edited by Cǎlin-Grigore Ambrozie, Florian-Horia Vasilescu |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1995 | |
300 | |a 1 Online-Ressource (V, 213 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and Its Applications |v 334 | |
500 | |a The aim of this work is to initiate a systematic study of those properties of Banach space complexes that are stable under certain perturbations. A Banach space complex is essentially an object of the form 1 op-l oP +1 ... --+ XP- --+ XP --+ XP --+ ... , where p runs a finite or infiniteinterval ofintegers, XP are Banach spaces, and oP : Xp ..... Xp+1 are continuous linear operators such that OPOp-1 = 0 for all indices p. In particular, every continuous linear operator S : X ..... Y, where X, Yare Banach spaces, may be regarded as a complex: O ..... X ~ Y ..... O. The already existing Fredholm theory for linear operators suggested the possibility to extend its concepts and methods to the study of Banach space complexes. The basic stability properties valid for (semi-) Fredholm operators have their counterparts in the more general context of Banach space complexes. We have in mind especially the stability of the index (i.e., the extended Euler characteristic) under small or compact perturbations, but other related stability results can also be successfully extended. Banach (or Hilbert) space complexes have penetrated the functional analysis from at least two apparently disjoint directions. A first direction is related to the multivariable spectral theory in the sense of J. L. | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Integral Transforms | |
650 | 4 | |a Operator theory | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Operator Theory | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Integral Transforms, Operational Calculus | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Several Complex Variables and Analytic Spaces | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Komplex |g Topologie |0 (DE-588)4164883-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Banach-Raum |0 (DE-588)4004402-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Banach-Raum |0 (DE-588)4004402-6 |D s |
689 | 0 | 1 | |a Komplex |g Topologie |0 (DE-588)4164883-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Vasilescu, Florian-Horia |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-011-0375-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859235 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153100020219904 |
---|---|
any_adam_object | |
author | Ambrozie, Cǎlin-Grigore |
author_facet | Ambrozie, Cǎlin-Grigore |
author_role | aut |
author_sort | Ambrozie, Cǎlin-Grigore |
author_variant | c g a cga |
building | Verbundindex |
bvnumber | BV042423818 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184431118 (DE-599)BVBBV042423818 |
dewey-full | 515.724 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.724 |
dewey-search | 515.724 |
dewey-sort | 3515.724 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-011-0375-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03332nmm a2200577zcb4500</leader><controlfield tag="001">BV042423818</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401103756</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-011-0375-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401041683</subfield><subfield code="c">Print</subfield><subfield code="9">978-94-010-4168-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-011-0375-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184431118</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423818</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.724</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ambrozie, Cǎlin-Grigore</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Banach Space Complexes</subfield><subfield code="c">edited by Cǎlin-Grigore Ambrozie, Florian-Horia Vasilescu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (V, 213 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">334</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The aim of this work is to initiate a systematic study of those properties of Banach space complexes that are stable under certain perturbations. A Banach space complex is essentially an object of the form 1 op-l oP +1 ... --+ XP- --+ XP --+ XP --+ ... , where p runs a finite or infiniteinterval ofintegers, XP are Banach spaces, and oP : Xp ..... Xp+1 are continuous linear operators such that OPOp-1 = 0 for all indices p. In particular, every continuous linear operator S : X ..... Y, where X, Yare Banach spaces, may be regarded as a complex: O ..... X ~ Y ..... O. The already existing Fredholm theory for linear operators suggested the possibility to extend its concepts and methods to the study of Banach space complexes. The basic stability properties valid for (semi-) Fredholm operators have their counterparts in the more general context of Banach space complexes. We have in mind especially the stability of the index (i.e., the extended Euler characteristic) under small or compact perturbations, but other related stability results can also be successfully extended. Banach (or Hilbert) space complexes have penetrated the functional analysis from at least two apparently disjoint directions. A first direction is related to the multivariable spectral theory in the sense of J. L.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Transforms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Transforms, Operational Calculus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Several Complex Variables and Analytic Spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplex</subfield><subfield code="g">Topologie</subfield><subfield code="0">(DE-588)4164883-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Banach-Raum</subfield><subfield code="0">(DE-588)4004402-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Banach-Raum</subfield><subfield code="0">(DE-588)4004402-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Komplex</subfield><subfield code="g">Topologie</subfield><subfield code="0">(DE-588)4164883-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vasilescu, Florian-Horia</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-011-0375-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859235</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423818 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:14Z |
institution | BVB |
isbn | 9789401103756 9789401041683 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859235 |
oclc_num | 1184431118 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (V, 213 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Mathematics and Its Applications |
spelling | Ambrozie, Cǎlin-Grigore Verfasser aut Banach Space Complexes edited by Cǎlin-Grigore Ambrozie, Florian-Horia Vasilescu Dordrecht Springer Netherlands 1995 1 Online-Ressource (V, 213 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 334 The aim of this work is to initiate a systematic study of those properties of Banach space complexes that are stable under certain perturbations. A Banach space complex is essentially an object of the form 1 op-l oP +1 ... --+ XP- --+ XP --+ XP --+ ... , where p runs a finite or infiniteinterval ofintegers, XP are Banach spaces, and oP : Xp ..... Xp+1 are continuous linear operators such that OPOp-1 = 0 for all indices p. In particular, every continuous linear operator S : X ..... Y, where X, Yare Banach spaces, may be regarded as a complex: O ..... X ~ Y ..... O. The already existing Fredholm theory for linear operators suggested the possibility to extend its concepts and methods to the study of Banach space complexes. The basic stability properties valid for (semi-) Fredholm operators have their counterparts in the more general context of Banach space complexes. We have in mind especially the stability of the index (i.e., the extended Euler characteristic) under small or compact perturbations, but other related stability results can also be successfully extended. Banach (or Hilbert) space complexes have penetrated the functional analysis from at least two apparently disjoint directions. A first direction is related to the multivariable spectral theory in the sense of J. L. Mathematics Functional analysis Integral Transforms Operator theory Differential equations, partial Operator Theory Functional Analysis Integral Transforms, Operational Calculus Partial Differential Equations Several Complex Variables and Analytic Spaces Mathematik Komplex Topologie (DE-588)4164883-3 gnd rswk-swf Banach-Raum (DE-588)4004402-6 gnd rswk-swf Banach-Raum (DE-588)4004402-6 s Komplex Topologie (DE-588)4164883-3 s 1\p DE-604 Vasilescu, Florian-Horia Sonstige oth https://doi.org/10.1007/978-94-011-0375-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Ambrozie, Cǎlin-Grigore Banach Space Complexes Mathematics Functional analysis Integral Transforms Operator theory Differential equations, partial Operator Theory Functional Analysis Integral Transforms, Operational Calculus Partial Differential Equations Several Complex Variables and Analytic Spaces Mathematik Komplex Topologie (DE-588)4164883-3 gnd Banach-Raum (DE-588)4004402-6 gnd |
subject_GND | (DE-588)4164883-3 (DE-588)4004402-6 |
title | Banach Space Complexes |
title_auth | Banach Space Complexes |
title_exact_search | Banach Space Complexes |
title_full | Banach Space Complexes edited by Cǎlin-Grigore Ambrozie, Florian-Horia Vasilescu |
title_fullStr | Banach Space Complexes edited by Cǎlin-Grigore Ambrozie, Florian-Horia Vasilescu |
title_full_unstemmed | Banach Space Complexes edited by Cǎlin-Grigore Ambrozie, Florian-Horia Vasilescu |
title_short | Banach Space Complexes |
title_sort | banach space complexes |
topic | Mathematics Functional analysis Integral Transforms Operator theory Differential equations, partial Operator Theory Functional Analysis Integral Transforms, Operational Calculus Partial Differential Equations Several Complex Variables and Analytic Spaces Mathematik Komplex Topologie (DE-588)4164883-3 gnd Banach-Raum (DE-588)4004402-6 gnd |
topic_facet | Mathematics Functional analysis Integral Transforms Operator theory Differential equations, partial Operator Theory Functional Analysis Integral Transforms, Operational Calculus Partial Differential Equations Several Complex Variables and Analytic Spaces Mathematik Komplex Topologie Banach-Raum |
url | https://doi.org/10.1007/978-94-011-0375-6 |
work_keys_str_mv | AT ambroziecalingrigore banachspacecomplexes AT vasilescuflorianhoria banachspacecomplexes |